

ETEC 400

Software Defined Radio:

Foundational Study

Western Washington University

Winter 2015

Final Report

4/9/2015

Nicholas Conroy

Faculty Advisor: Andrew G. Klein

1

Introduction
This report covers a set of research and studies conducted over the course of the Winter

2015 term relating to the fundamentals of Software Defined Radio (SDR). These topics were

largely related to the design and implementation of SDR receivers and involved simple system

level design, toolset comparison and selection, and receiver realization. The target goal at the

end of the quarter was to be a real-time receiver and decoder for radio signals transmitted by

“Smart Meters” commonly used in the North American region including the Bellingham WA area.

This report assumes the reader has some basic knowledge of radio systems equivalent to

ETEC405 or EE counterpart.

1. Background
 To begin, we present the basis of Software Defined Radio from a system level view. In a

typical radio system transmitter, a low frequency intelligence or information signal is combined

with a higher frequency carrier using an appropriate type of modulation. At the receiver, the

signal is demodulated recovering the original lower frequency intelligence signal. Amplification

and filtering is used at both the transmitter and receiver to improve the strength of the desired

signal and to reduce the effect of signal noise.

Typically, all of these operations are handled by some sort of purely hardware based

modulator, transmitter, receiver, and demodulator. In contrast, a Software Defined Radio

performs the majority of signal processing using software algorithms with signals at baseband.

When transmitting, these basebands signals are boosted to the transmitting frequency, filtered

to remove extra copies of the signal, and finally amplified for transmission. For an SDR receiver,

the signal is filtered, stepped down to baseband, and quantized. The system level description of

an SDR transmitter and receiver system is shown below for visualization:

Figure 1: SDR Transmitter

Figure 2: SDR Receiver

2

 The primary advantage of SDR transmitters and receivers is far greater flexibility in

signal modulation techniques. Since the modulation and primary signal processing is handled in

software, systems utilizing SDRs can rapidly alter the modulation technique used even in real

time. It also allows for easy and rapid prototyping of new modulation techniques without the

need for creating dedicated hardware for each revision. Unfortunately, SDR systems do require

more digital processing power in the form of a general purpose processor or FPGA which may

increase the cost of hardware.

2. Tasks

2.1 System Selection

In selecting the SDR system to use for study, several factors were considered including cost,

availability, frequency range, and software compatibility. The two primary systems considered

were Ettus USRP transmitter/receivers and RTL-SDR compatible receiver dongles. While

USRPs are professionally engineered radio equipment, RTL-SDR compatible dongles are

usually modified USB TV tuner cards with SDR based chipsets with hardware and firmware

modifications to allow for more control over tuning parameters. The table below presents and

compares the functional characteristics of the two systems:

 Ettus USRP E310 RTL-SDR (RTL2832U base)

Transmitter Yes (2 per unit) No

Receiver Yes (2 per unit) Yes (1 per dongle)

Frequency Range 70MHz - 6GHz 24MHz - 1766MHz

Max Bandwidth 56MHz 2.4MHz - 3.2MHz (varies per device)

DAC Resolution 12 bits NA

ADC Resolution 12 bits 8 bits

Signal Processing ARM Cortex A9, Xilinx FPGA USB connected PC required

Compatible Toolsets MATLAB(limited), GnuRadio,
UHD, Xilinx ISE

MATLAB, GnuRadio, OsmoSDR
(enables Python, C, Go and other
program development)

Cost $2700+ $10-$22

Availability (for
Winter 2015)

5+ week lead time Available immediately

Table 1: Available SDR Comparison

3

 For an introductory study of SDR we decided that an RTL-SDR based project was the

most reasonable option. Though not as feature rich as a USRP, an RTL-SDR system would

enable early development of a project that could be later ported over and improved. At the time

of consideration, the RTL-SDR system was also the only hardware option that was already on

hand. However, the choice of the RTL-SDR did have the consequence of limiting the scope of

the project to reception only for the Winter term. It was anticipated that the SDR project would

continue into the next quarter at which point transmission and receiver design could be

expanded upon with newly arrived USRP equipment.

2.2 Project Target

To simplify the validation process of the receiver system developed, it was decided that

the topic of an existing RTL-SDR project would be replicated using a similar or different

development platform. Smart Meters were chosen as the target signal source as there had been

already been some interest. Several open source RTL-SDR projects were identified that target

Smart Meters of various protocols.

Investigation by the faculty advisor including contacting the local utility company, Puget

Sound Energy, and researching meter FCC identifiers revealed that most smart meters in the

Bellingham area, with the exception of electric meters, use a protocol called Encoder Receiver

Transmitter (ERT) [1] [2] used by the company Itron. The local electric meters are manufactured

by a different company, Elster, and hence uses a different protocol.

It was eventually decided that initially an ERT decoder would be created first to become

familiar with the development tools and SDR in general. Later, another demodulator and

decoder for the Elster protocol was to be made. Basic research revealed that while the ERT

protocol uses On-Off Keying, the Elster protocol uses a type of Quadrature modulation that may

have been more challenging to test and debug when working with an unfamiliar development

environment.

2.3 Development Environment

Initially, GNURadio was chosen for the development environment since it would allow us

to directly and relatively easily port any demodulator and decoder systems from RTL-SDR to a

USRP. GNURadio is a modular signal processing suite built upon optimized libraries written in C

and primarily interfaced through Python scripting. A complimentary GUI system is also

available, called GNU Radio Companion (GRC), which allows libraries to be connected together

visually with the necessary Python scripting required for connection being automatically

generated [3].

Interfaces to receiver and transmitter hardware is made through dedicated source and

transmitter blocks which supply or accept signals to the rest of the processing model. In this

way, a given modulator or demodulator system can potentially be ported between hardware

SDR interfaces merely by changing the source and sink blocks used. It was planned that after

developing and testing the ERT decoder for RTL-SDR it would be ported over to for USRP once

units were available for use.

However, as development started several disadvantages of GNURadio were discovered

which slowed our progress considerably. Like many open source projects, you will find that

GNURadio does not officially support Windows environments and is overall abysmally

4

documented. For this reason we used a Debian based distribution of Linux (Mint 17) inside an

Oracle VMWare virtual machine. This setup then later had to be abandoned when we found that

the drivers necessary to tunnel USB devices from the Windows host to the virtual environment

could not provide the bandwidth necessary for an RTL-SDR dongle without dropped samples

occurring. A separate partition was then created on the development computer for a native

installation of Mint.

From here, progress continued slowly as the true depth of GNURadio’s hundreds of

libraries was discovered. It was clear that while the tools necessary to create an ERT

demodulator and decoder were likely contained within GNURadio, they would not be discovered

particularly quickly by a new user. It was then decided that a better course forward would be to

find a similar RTL-SDR project intended to decode similar OOK modulated signals rather than

building from the ground up.

For this purpose, several open source projects were investigated and examined

revealing yet another flaw of using GNURadio as a rapid development environment. Installing

GNURadio from source along with its dependencies and RTL-SDR blocks is a very lengthy

process which can take up to 4 hours when using an automated script and likely far longer if

installed manually. Unfortunately, the script used [4] installs the latest version of GNURadio,

which at the time of the study was Version 3.7.6. We soon discovered that in the switch from

version 3.6 to 3.7, the locations of GNURadio and associated Python blocks had been

completely reorganized, thus breaking compatibility with all GNURadio projects created with

version 3.6 or earlier. This, unfortunately, included the majority of GNURadio projects written for

RTL-SDR. With the possibility of using existing projects as a map to GNURadio’s functionality

shattered and half the term nearly over, GNURadio was dropped in favor of a better

documented and familiar toolset.

MATLAB was originally passed over in favor of GNURadio due to GNURadio’s better

support for USRP systems. However, the objective of the course was primarily to learn the

foundations of Software Defined Radio for which MATLAB is ultimately the better tool.

Unfortunately, RTL-SDR development in MATLAB requires the use of the Communications

System Toolbox which at the time of study was not part of the university’s license. Therefore a

personal student copy of MATLAB with the toolbox was purchased by the author for

development. This had the side effect of making development operating system agnostic as the

MATLAB environment is largely identical between Windows and Linux.

2.4 Final Project

 With the choice of MATLAB and the limited time remaining, it was decided that the

remainder of the course study would consist of implementing a demodulator and decoder for

ERT messages. This system would first operate on pre-recorded meter signals, of known value

after decoding, for validation. Next, the system would be optimized and converted to run in

realtime in conjunction with an RTL-SDR receiver.

 As a baseline, we used an open source project called RTLAMR [5] was used to find

neighborhood meter messages. In addition to logging the decoded messages, the raw samples

corresponding to each decoded message were logged to file using the available “-samplefile”

command line argument. To speed development of a binary message decoder/parser, a rough

MATLAB script was created by the course advisor to extract a correct binary string from a

5

manually selected string of samples. After creating the necessary binary decoder, the student

then wrote a revised demodulation script designed for higher efficiency. The design details and

results of this development are covered in the following section.

3. Final Product
 To begin, we present a more detailed system level diagram of our SDR receiver, this

time considering our desired final system:

Figure 3: Meter Reader System Flow

The challenge is to create a script which can perform all the tasks detailed above fast enough to

keep pace with our RTL-SDR source to the right. We first start with our magnitude conversion:

3.1 Magnitude Conversion

 Samples received from the RTL-SDR device, and logged in the RTLAMR signal file, are

in the format of I and Q samples that are each 8bits in size. For OOK modulation, neither the I

nor Q signal bears any important information since we are only interested in the presence or

non-presence of a transmitted carrier signal. Therefore, to partially demodulate the signal we

simply take the magnitude, or absolute value, of the I and Q samples as presented below:

𝑠𝑛 = √(𝐼𝑛)2 + (𝑄𝑛)2

In MATLAB, we can accomplish this operation using the “abs()” command for floating point

values. For the native 8bit integers provided by the RTL-SDR device, we can make do with

simply squaring and adding the I and Q samples. To perform a square root function, we would

have to type cast to a floating point, incurring an additional processing overhead that should be

avoided. This stage is important because, as will be shown later, the bit detection algorithm

relies on there being no negative samples.

3.2 Bit Detection

 For an oversampled Manchester encoded signal with noise, the message bits can be

extracted using a filter constructed with a convolution function. This is the method used in the

advisor supplied decoder script, but it is useful to understand how it operates so that we can

improve efficiency later. Though the MATLAB implementation uses convolution, the intended

action is actually better understood as a calculation of how closely the signal matches an ideally

6

shaped Manchester encoded bit over a given period of time. Below we show the ideally shaped

bit that we would use in our convolution:

Figure 4: Convolution Reference Shape

 Convolution essentially takes this ideal shape and slides it over our stream of sample

magnitudes in a buffer, typically the length of a single message. It is useful to note that with the

default RTLAMR sampling rate of 2.392064 MHz and the normal ERT symbol rate of

32.768kbps, each symbol received will be 146 samples long. Each time the waveforms are

shifted over each other, the area enclosed by the two waveforms is calculated and stored in a

new buffer, which incidentally will be 146 terms larger than the input buffer due to the shifting.

As the mask slides across objects that are similarly shaped the calculated result increases in

value until it reaches a peak where the two shapes are most similar to each other. Since the

mask has a negative portion, we will also see a negative counterpart that is called the valley.

 Below, the resulting convolution is presented for a sampled signal plotted as processed

from the basic convolution detector provided by the instructor. The original, unfiltered signal has

been multiplied by 30 so that it is visible on the same scale as the convoluted output. The bits

encoded in the original message have been added to the top for better clarity. Also note that the

horizontal grid is in steps of 146 samples.

7

Figure 5: Convolution Detector On Real Signal

 A pattern emerges such that for every 146 frames of the convolution, there will be either

a peak or a valley depending upon whether the mask passed over a “one” shape or a “zero”

shape. While noise has some effect on the convolution, it is minimal since the area between the

noise waveform and zero is very small. In order to extract bits from the convoluted output, the

detector merely needs to check the sign of the convolution once every 146 slices. It is not even

necessarily needed to detect when the peaks and valleys occur, but instead simply shift new

samples in as they are received from the receiver, perform the convolution and check for a valid

preamble or other parameter that would confirm the validity of the detected bit stream.

 A major disadvantage of using convolution, however, is that it is very mathematically

intensive requiring all elements of the mask and the string of samples are multiplied together at

some point. Ideally, a bit detector would only require adding or subtracting since this is far faster

to execute.

 This brings us to the final bit detection method which was developed for the project,

employing cumulative summation rather than convolution. To start we once again present only

single bits. Below are the cumulative summations for a Manchester encoded one and zero:

8

Figure 6: Cumulative Sum of Manchester “1”

Figure 7: Cumulative Sum of Manchester “0”

 When visualized in this manner, it is quite apparent that the relative values of the

summation at the start, middle, and end of the symbol frame can be used by the detector. This

can be achieved if the detector compares the values of the summation vector in the following

manner:

9

𝑆𝑜𝑓𝑡𝑏𝑖𝑡(𝑛) = [𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑚𝑖𝑑𝑑𝑙𝑒) − 𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑠𝑡𝑎𝑟𝑡)]

+ [𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑚𝑖𝑑𝑑𝑙𝑒) − 𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑒𝑛𝑑)]

 = 2 ∗ 𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑚𝑖𝑑𝑑𝑙𝑒) − 𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑠𝑡𝑎𝑟𝑡) − 𝑠𝑢𝑚(𝑠𝑦𝑚𝑏𝑜𝑙(𝑛). 𝑒𝑛𝑑)

The term “Softbits” is used in this context as a label for an intermediate integer value whose

polarity indicates the value of the detected bit. A related alternative method used in RTLAMR is

to perform the cumulative summation on a larger swath of samples and using a similar equation

to the one above over the entire summation. This produces a kind of sawtooth waveform with

peaks and valleys centered on positive and negative bits. The bits can then be extracted by

using a peak detection algorithm. For simplicity, however, the detector developed again simply

cycles samples through our detection algorithm and parse the bits for identifying information,

such as a preamble, to determine when a valid string of bits has been captured.

 At this stage it is worth noting the effect of the carrier frequency used on the

operation of the bit detector. In short, there is actually very little practical effect on the detector

design. The meters make use of frequency hopping across several channels in the 902MHz-

928MHz ISM band. As will be shown below this does not affect the detector, but it does mean

that some number of messages transmitted will not be detected by the system due to the limited

2.2Mhz - 2.7MHz maximum bandwidth of the RTL-SDR receiver.

Since the bit rate of the original intelligence signal (the meter data) does not change

when different transmitting channels are used, the number of samples required to fully capture a

single message will only change with the sampling frequency used. For the best results, a

sampling frequency is used which will yield an equal number of samples for every transmitted

bit. Since development began with logged data from RTLAMR, we use its default sampling

frequency of 2.392064 MHz. Given the intelligence signal data rate of 32.768kbps, there are a

total of 146 samples (combined I and Q) for each transmitted symbol (corresponding to one

Manchester encoded bit).

3.3 Message Validation and Parsing

In the Bellingham area, ERT Smart Meters appear to primarily use messages in a format

called Standard Consumption Message (SCM). SCM messages are made up of a total of

12bytes, or 96bits, of data which are transmitted in Manchester encoding and utilizing OOK

modulation as we saw above. The makeup of each message is detailed in the table below [6]:

10

Bits Length Description

1 1 Sync bit. Always 1

2:21 20 Preamble: 0xF2A60

22:23 2 The two most significant bits
of the meter ID number

24 1 Reserved bit

25:26 2 Physical tamper flag bits

27:30 4 Meter type (gas, water, etc.)

31:32 2 Encoder tamper flag bits

33:56 24 Commodity consumption
value or rate

57:80 24 Remaining meter ID bits

81:96 16 “Checksum” for BCH error
detection and correction code

Table 2: Bit Layout of ERT SCM Message

This is the structure of bits we would expect to see if the decoder is operating properly and there

is a minimal amount of noise in the received signal. The most basic check it can perform for

message validity is to compare the first 23 decoded bits to the sync bit plus preamble

(0x1F2A60). If these bits match, then it can move on to the second portion of its validation

procedure which is to perform error checking with the BCH code.

 In SCM formatted messages, the checksum is actually the result from passing the rest of

the message, minus the sync bit and preamble, through a BCH polynomial of the following form:

𝑝(𝑥) = 𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥1 + 𝑥0

BCH codes can be described in terms of “k” and “n” numbers which correspond to the message

length in bits before and after being processed through the polynomial. For the above

polynomial, a “k” value of 239 and an “n” value of 255 are required. It is apparent that in order to

perform the BCH operation, the message must be padded with extra bits. When transmitted, the

59 message bits are padded with 180 zero bits and passed through the BCH polynomial

resulting in 16 extra bits being added onto the end for a total of 255 bits. The 180 zeros are then

truncated and the preamble and sync bit are added.

 On the receiving end, the message must once again be padded up to 255bits before
running the string of bits through the decoder’s BCH processor, which uses the 16bit
“checksum” to detect and correct bit errors. In this case, up to 2 error bits can be detected and

11

corrected. The output of the BCH processor is reduced back to 239bits, of which only about the
last 59bits are important. Thankfully, the MATLAB Communications Systems Toolbox includes
BCH processing functionality making the implementation of this system rather trivial.
 By observing the number of bits errors detected and corrected, the decoder can
determine if a valid string of bits was decoded. From there it is a trivial process of isolating the
relevant strings of bits, converting to data to decimal format, and presenting the message data
to the user via the terminal.

4. Optimization and Performance
 When interfacing an RTL-SDR device through MATLAB, it is necessary to receive
samples in batches rather than individually in order to reduce processing overhead. For the
detector created, batches of 18688 complex I/Q samples are received, which are subsequently
converted to magnitude form and stored in a buffer. The binary detector then parses the first
96*146 samples for bits and passes the result along for validation. If the preamble bits do not
match or the BCH code detects any bit errors, then it is assumed that the message was not
valid. The decoded bits are discarded and the bit detector begins again after skipping ahead in
the buffer by 30 samples. If the preamble does match, and there are no bit errors detected, then
it is assumed that a valid message was received and it is subsequently parsed and displayed to
the user. To avoid detecting the same message twice, the bit detector jumps ahead a number of
samples equal to the message length (96*146 in our case) before operating again. If there is not
enough samples in the buffer left to run bit detect again, then execution stops until more
samples arrive from the RTL-SDR device. A flowchart of this process is shown below:

Figure 8: Final Meter Reading Flow

12

Unfortunately, it was found that on a typical computer the system was unable to run fast
enough to process all samples before new samples were available, resulting in lost samples.
While more samples could be skipped to reduce computation, it was found from testing with
logged data that more than 30 skipped samples would result in an unacceptable decreases in
message detection ability. Worse, it was also noted during testing with log data that even with
preamble and bit error checking, erroneous messages were detected and deemed valid. This
flies in the face of the expected improbability of erroneously detecting bits aligning in just such a
manner that a valid BCH would result. We believe that this may be a problem mostly caused
and limited to the concatenated nature of the signal log resulting in valid bits from different
messages being unintentionally connected together during decoding.

Conclusion
At the time of writing, it may be possible to overcome the overhead of MATLAB by

reducing the sampling frequency from the RTL-SDR device such that an equal number of
samples are taken for each message symbol. However, due to serious time constraints this has
not been implemented. A potential extension to the project, for future terms, may be to once
again attempt a GNURadio version of the system, which may lead to faster performance both
running on a PC with an RTL-SDR device or later with a USRP.

However, we can say with confidence that the overarching goal of the course was
accomplished. Though the projects undertaken did not yield the desired performance, a great
deal was learned about how software based signal processing and logic can be used to process
radio signals, in this case nearly in real time. As side effects, a basic understanding of the Linux
development environment was gained including working with drivers, Python scripting, and
dealing with program dependencies. In short, the course study succeeded in preparing the
student for future, more productive work with Software Defined Radios.

13

Bibliography

[1] Q. S. D. Mervin L. Grindahl, "Automatic/remote RF instrument monitoring system". United

States of America Patent US4799059 A, 14 March 1986.

[2] J. R. N. Robert E. Brunius, "Automatic/remote RF instrument reading method and

apparatus". United States of America Patent US4614945 A, 20 February 1985.

[3] J.-P. Lang, "Welcome to GNU Radio!," [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki. [Accessed 9 April 2015].

[4] M. Leech, "Shirleys Bay Radio Astronomy Consortium GNURadio Installation Bash Script,"

[Online]. Available: http://www.sbrac.org/files/build-gnuradio. [Accessed 9 April 2015].

[5] D. Hall, "An rtl-sdr receiver for Itron ERT compatible smart meters operating in the 900MHz

ISM band.," [Online]. Available: https://github.com/bemasher/rtlamr. [Accessed 9 April

2015].

[6] D. Hall, "rtlamr: Protocal," [Online]. Available: http://bemasher.github.io/rtlamr/protocol.html.

[Accessed 9 April 2015].

14

Appendix I: Final MATLAB Project Code

15

	Introduction
	1. Background
	Figure 2: SDR Receiver

	2. Tasks
	Table 1: Available SDR Comparison

	3. Final Product
	Figure 3: Meter Reader System Flow
	Figure 4: Convolution Reference Shape
	Figure 5: Convolution Detector On Real Signal
	Figure 6: Cumulative Sum of Manchester “1”
	Figure 7: Cumulative Sum of Manchester “0”
	Table 2: Bit Layout of ERT SCM Message

	4. Optimization and Performance
	Figure 8: Final Meter Reading Flow

	Conclusion
	Bibliography

