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Abstract—This report details the methods, algorithms and
results implemented for the IEEE Signal Processing Cup 2020.
We propose an abnormality detection method to be applied in
scenes where IMU data is available. Our initial results show that
the dynamic representations embed action concepts that allow to
mimic the normal behavior when tracking. Hence, they act as
ground truths at different settings. The proposed methodology is
tested on real data produced by a camera and IMU data from
a GPS with information about objects. Automatic detection of
abnormalities in surveillance vehicles facilitates in understanding
autonomous vehicle awareness.

Index Terms—Autonomous Vehicles, Anomaly Detection, Un-
supervised Classification, Signal Processing Cup

I. INTRODUCTION

Autonomous systems are intelligent learning agents that can
be trained to perform sensing, modeling and decision making
in dynamic environments. Machine learning is commonly used
here to facilitate online learning and improve the performance
of the systems. However, this has also increased safety con-
cerns. More robust systems are being designed by identifying
the hardware and software related issues.

Anomaly detection plays an important role in detecting the
faults and improving learning methods. Many strategies have
been applied to several transportation-related domains. Related
research has increased substantially over the past few years
because of the progress made in machine learning. Though it
has been mostly based on supervised learning models where
there are labels, there has also been an increasing interest in
adopting unsupervised learning models.

Surveillance vehicles like UAVs can detect dangerous situa-
tions require analysis of the target’s movements to understand
the dynamics of the model. Normality is defined by a set
of rules, policies or in general, a set of observed organized
behaviors. When the activities that do not match with patterns
previously observed or learned as normal, they are classified
as abnormalities. The ultimate goal for the UAV here is
to interpret measurements, detect abnormal observations and
adapt to unseen situations.

State-of-the-art anomaly detection methods are detailed in
[1] that proposes a measurement for abnormality detection
based on innovations produced by a set of Kalman Filters
that encode the normal (expected) situations. [2] analyzes an
algorithm for autonomous system that calculates the optimal
sequences of actions to avoid obstacles dynamically around

a changing environment without prior knowledge about its
surroundings. Motivated by this, many approaches such as
GANs [3], [4], clustering algorithms [5]. Existing approaches
based on trajectory modeling can be categorized into two
main branches [1]: (a) Similarity-based, which define pairwise
similarities between trajectories. (b) Motion-based, where a
mapping of input trajectories is described by combining the
dynamics of moving objects [6].

The main idea is as follows:
• Understand the internal dynamics of the drone using

normal data such as external information like video
sequences and internal state information like IMU data.

• The algorithm should be able to track, model, extract
meaningful features and thus model the behavior of the
drone.

• When we have an abnormality compared to the normal
whether it is with the drone or the target, we should be
able to identify it.

The rest of this paper is organized as follows: Section
II describes the process of data extraction, pre-processing
and providing more details on the given ground truths and
variables. Section IV describes the classification methods used.
Section V describes the results we obtained, and Section VI
gives the conclusions we have drawn from our experiments.

II. DATA SET

For this competition we were given a data set of measure-
ments from various sensors mounted on autonomous vehicles.
The data was stored in rosbag log files, data files that are
the default storage method for the Robot Operating System
(ROS) [7]. The data came from drones that were operating in
either an anomalous or non-anomalous state. The data set was
composed of 12 experiments, 6 from non-anomalous flights,
and 6 from anomalous flights. The anomalous experiments
consisted of a combination of normal and abnormal states,
while the non-anomalous experiments included only normal
state activity. In total the data set consisted of 671 images,
271 from the anomalous rosbag files and 417 from the non-
anomalous rosbag files. The data set also contained 1778 IMU
samples, of which 1025 belong to the non-anomalous rosbag
files, and 753 belong to the anomalous rosbag files.

The data sets themselves were compositions of data from
multiple sensors, including GPS, battery, camera statuses and



Fig. 1: Original vs Post Processed Image

images, and Inertial Measurement Unit (IMU) samples. An
IMU is a device that uses Gyroscopes, Accelerometers, and
other sensors to determine the specific forces [8] acting on
the device. The IMU measurements came in on average every
0.2414 seconds, and the camera images came in every 0.6276
seconds. The only measurements that we used for classification
from the array of sensors we had access to was the IMU’s
3 Accelerometers, and 3 Gyroscopes, as well as the raw
images from the camera. The raw IMU data was directly used
for classification, while the images were converted to grey
scale and down sampled to 5x their original resolution. This
is a relatively common image processing technique [9] that
improves accuracy by making sure that minute differences
in shading or lighting have much less of an effect on our
images. The original images were 1536x2048x3 Red Green
Blue (RGB) images while the images after our pre-processing
stage were 154x205 gray-scale images (Figure 1). The Post
Processed image in Figure 1 is scaled up to a similar resolution
as the RGB image simply for comparison purposes, and is
much smaller in practice.

We were tasked with creating a model capable of classi-
fying the drone’s current state as either anomalous or non-
anomalous. This involved classifying each timestamp, with
classification coming from both drone images and IMU data.
In addition to this, the problem specified that we were to use
the non-anomalous experiments as our training data for our
classifier, and for us to use the non-anomalous experiments to
test our model’s performance.

The first step that was required for any classification scheme
was to synchronize the IMU and image data. Because we did
not want to drop any IMU samples, we decided to synchronize
the data around the IMU timestamps, and associate images
with neighboring timestamps to the IMU samples. For each

experiment we created a vector of length equal to the distance
between the first IMU or camera timestamp, to the last IMU
or camera timestamp, with step size of the average IMU time
between IMU samples, 0.24 seconds. Then at each timestamp
of this vector we found the image with the closest associated
timestamp, and the IMU sample with the closest associated
timestamp. Table I shows timing errors that were created by
this synchronization step.

TABLE I: Timing offsets of data sets
Average Time Difference (s) Maximum Time Difference (s)

Abnormal IMU 0.0074 0.0599
Abnormal Cam 0.1770 0.7423
Non-Abnormal IMU 0.0353 0.1424
Non-Abnormal Cam 0.1517 0.7622

The ground truth we used to determine the accuracy of our
algorithms was not provided, and we were tasked with coming
up with our own labels for the data set. We choose to have a
human go through the flight experiments frame by frame and
label each image as belonging to an anomalous timestamp or
not. In general the human labelled the images that had the
most camera shift from image to image as anomalous, while
relatively stable camera transitions resulted in images being
labeled as non-anomalous. Because we later synchronized the
IMU and Camera data, we were also able to classify the IMU
samples as being anomalous based on whether they belonged
to an anomalous image or not. We synchronized the IMU
data and images by taking the average distance between IMU
samples and sampling the data at this interval until we had
reached the maximum timestamp of the data. For each sample
of the data we selected the image and IMU sample that was
closest to the assigned timestamp, and labeled the IMU data
as having that image associated with it. Of the 271 images
from the anomalous data set, 46 images were labelled as non-
anomalous, with 225 images being labelled as anomalous. And
from the IMU data obtained from the anomalous data set, 629
of the 753 IMU samples were classified as anomalous, while
124 of the samples were found to be non-anomalous.

III. IMAGE FEATURE EXTRACTION

In order to fully utilize our data set we needed to condense
the images down into features. Because the most important
parts of the images were their relation to the past images,
we found that incorporating some amount of temporality was
necessary to capture what separates an anomalous series of
images from a non-anomalous series. In order to compare
the images we needed to find a good metric of comparison.
Structural Similarity (SSIM) [10] Measure as our comparison
metrics.

SSIM is a metric we use to compare images, that is a
result of a recent advances in image comparison and image
quality assessment. SSIM was designed to show visual quality
differences from one image to another that would match how
the human eye would compare them. SSIM is made up of 3
parts, a luminance comparison, a structural comparison, and a
contrast comparison. The luminance comparison is calculated
as l(x, y) in Equation 1, the contrast comparison is calculated



as c(x, y) in Equation 2, and the structural comparison is
calculated as s(x, y) shown in Equation 3. Finally the whole
SSIM comparison algorithm is calculated as in Equation 4.
The constants C1, C2, and C3 are chosen to prevent the equa-
tion from becoming unstable as limµx→0, limµy→0, limσx→0,
and limσy→0. For a more rigorous derivation of the properties
of the SSIM measure, please see [10].
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Despite the fact that SSIM is traditionally used for image

quality comparisons, often before and after compression, it
also gives an indication of the structural, contrast and lumi-
nosity differences between two images. You can see the dif-
ferences in the statistics of the anomalous and non-anomalous
images in Figures 2 through 7. As you can see from Figures 6
and 7, the Structural Scores of the test and train data sets are
very similar, which means this sub-feature does not lend itself
well to classification. The Contrast sub-feature on the other
hand has a very distinct difference between the Test and Train
experiments, as seen in Figures 4 and 5. This means that it
would be an excellent sub-feature to be used for classification.
The final sub-feature, Luminance, also seems to be a good sub-
feature for classification, as the Train data is centered much
closer to 1 than the Test data.

Because of the statistics of these sub features, we decided
to use a combination of Contrast and Luminosity when clas-
sifying our images, meaning we set the exponents α = β = 1
and γ = 0 which simplifies equation 4 to equation 5.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

In order to get a better idea of how the images the camera
has been capturing have changed over time, we used SSIM
to compare the current image at timestamp t, to the images
at timestamp t − 1 and t − 2. We call these SSIM compar-
isons First Order (FO) and Second Order (SO) comparisons
respectfully. Because these images are separated by over half a
second from each timestamp to timestamp, comparing images
any further back than 2 timestamps would not be representative
of any anomalous activity, since the drone could quite easily

be looking at a completely different scene in the span of 1.5
seconds.

In order to support the comparisons described above, we
could not use some of the images from the data set. The first
two frames of each experiment were dropped from the data
set in order to maintain consistency across all classifiers.

Fig. 2: First Order Luminosity Score of Anomalous vs Non-
Anomalous images

Fig. 3: Second Order Luminosity Score of Anomalous vs Non-
Anomalous images

Fig. 4: First Order Contrast Score of Anomalous vs Non-
Anomalous images



Fig. 5: Second Order Contrast Score of Anomalous vs Non-
Anomalous images

Fig. 6: First Order Structure Score of Anomalous vs Non-
Anomalous images

IV. CLASSIFICATION METHODS

This section details the classification techniques that
we used to differentiate between the anomalous and non-
anomalous samples of the test dataset. All our models use the
non-anomalous experiments as training data to determining
what a non-anomalous state looks like, and then uses this
information to determine what state the drone is in at a
particular timestamp.

In order to understand the Classification techniques that will
follow, it is important to know how well the baseline “naive”
classifier would perform. We found that by classifying every
data point in the anomalous experiments as anomalous gave
us an overall accuracy of 86.53%.

A. Mahalanobis Thresholding

Our primary method for classifying the IMU data was to
calculate the Mahalanobis Distance of each sample from the
mean of the data set. Mahalanobis distance [11] is the distance
of a sample from the centroid of that samples population.
Equation 6 shows how to calculate the Mahalanobis distance
for an individual sample, given xi is the sample of interest, x̄
is the sample mean, and C−1 is the sample covariance matrix.
The Mahalanobis distance allows us to calculate how far away
the point we are looking at is from the centroid of the data.

Fig. 7: Second Order Structure Score of Anomalous vs Non-
Anomalous images

Fig. 8: Comparison between Angular Velocity in X direction
of anomalous and non-anomalous samples

In order to classify an IMU sample as anomalous or not, we
simply compute its Mahalanobis distance, and if that value
is above a threshold then we can predict that the sample is
anomalous.

D = [(xi − x̄)C−1(xi − x̄)]0.5 (6)

The Mahalanobis distance is an effective classifier for
the IMU features because each of the features has its own
statistical profile (see Figures 8, 9, and 10) that when combined
together allows for easy separation of anomalous and non-
anomalous data points.

Mahalanobis Thresholding has been used for classifying
anomalies in autonomous vehicles before [12], but in our case
we are only using the IMU data in our Mahalanobis classi-
fier. Unlike other classifiers such as k-means clustering [13],
or deep learning algorithms [14], the Mahalanobis distance
benefits from having a few statistically unique variables that
make up the multivariate distribution it is comparing all data
to. Because the IMU variables are quite statistically varied, this
makes it the perfect candidate for the Mahalanobis distance.

To calculate the values for the Mahalanobis distance that we
as our threshold of abnormality, we first need to establish what
the centroid of the statistics with which we will be measuring



Fig. 9: Comparison between Angular Velocity in Y direction
of anomalous and non-anomalous samples

Fig. 10: Comparison between Angular Velocity in Z direction
of anomalous and non-anomalous samples

distance from should look like. We calculate this by taking
the Mahalanobis distance of each point in the training dataset,
with respect to the training dataset. We then calculate our
abnormality threshold as 2 times the maximum value obtained
from the training dataset. We use 2 times the maximum value
of the training data because this prevents samples that are very
close to the maximum of the training data from being classified
as anomalous, and as such gives us increased resilience to
sensor and environmental noise.

In addition to just using the Mahalanobis distance, this
classifier also took advantage of some of the temporal infor-
mation relating the anomalous samples to each other. It did
this by only labelling a sample as anomalous if the previous
4 samples were also labelled as anomalous, meaning that
misclassifications of a single sample would not yield any false
results.

B. Image Thresholding

While the Mahalanobis classifier exclusively utilized the
IMU data, we also wanted to leverage the image data that
comprised a large portion of the dataset, in order to generate
another classifier. As described in Section III, we extracted

(a) (b)

(c) (d)

Fig. 11: (a) First frame of sequence / labelled non-anomalous,
(b) Second frame of sequence / labelled non-anomalous,
(c) Third frame of sequence / labelled anomalous, (d) Fourth
frame of sequence / labelled anomalous

features using SSIM comparisons with previous images from
the same experiments.

We decided that a thresholding classifier [15] would be
the most appropriate classifier. The theory of our thresholding
classifier is that the SSIM comparison score of the images will
be larger for the non-anomalous dataset that we train on, and
will be smaller for the anomalous samples in the anomalous
dataset. This is because the image labels are based specifically
on the amount of motion between frames. Images that had very
little transitional motion between frames were labelled as non-
anomalous, while ones that had large amounts of transitional
motion were generally considered to be anomalous. This can
be seen in Figure 11, where we have two non-anomalous
frames followed by two anomalous frames. The images go
in chronological order of when they were captured from top
to bottom. This shows how the anomalous frames have a large
amount of camera sway between images. We found that this
created a difference in SSIM scores from the first and second
order image comparisons. From this we set up our threshold
to be a constant multiple of the minimum SSIM score from
the non-anomalous dataset. Then we classified a timestamp in
the anomalous dataset based on whether the SSIM scores of
the timestamp were below a threshold.

This classification scheme also utilized the temporal char-
acteristics of the data in a similar fashion to the Mahalanobis
classifier.

C. Combined Classifier

While the Mahalanobis classifier used the IMU data to
classify individual timestamps, and therefore did not take
advantage of the image difference features that were essential
to the human labelling of the data. However the Image
Thresholding classifier did not utilize the IMU features, and
as such lost out on a large portion of the provided data.



The Combined Classifier sought to combine the two previous
classifiers, and gain the benefits of both classifiers.

The combined classifier sought to use both the Mahalanobis
distance, and characteristics of the image comparison features
to create a more accurate classifier that used all the most rele-
vant information available to the model. It simply cascaded the
two previous classifiers, calculating the Mahalanobis distance
threshold and SSIM thresholds from the normal dataset, and
classifying timestamps in the abnormal dataset based on these
thresholds.

Just like the previous two classifiers, the Combined Classi-
fier used the temporal characteristics of the data to improve
classification and minimize False Negative errors.

V. RESULTS

In Table II you can see the results of our classifiers on the
abnormal data sets that we were provided during the compe-
tition. The accuracy is calculated from what timestamps each
classifier labelled as anomalous or non-anomalous, compared
with what the human observer labelled the timestamp as.

TABLE II: Classifier Results

% Accuracy % FP % FN
Mahal Classifier 91.81 24.74 5.62
Image Classifier 89.44 78.35 0
Combined Classifier 92.64 24.74 4.65
Naive Classifier 86.53 100 0

As expected, the “naive” classifier did the worst, with the
Combined Classifier performing the best overall on the dataset.
The Image classifier had the lowest False Negative (FN) score,
while the Mahalanobis Classifier was tied with the Combined
classifier for the best False Positive (FP) score.

Because the “Naive” Classifier started at 87% it is important
to look at the FP and FN scores of the classifiers, as in the
real world if you are attempting to do Unsupervised anomaly
detection in surveillance vehicles, it would be unwieldy and
burdensome to simply label all data points as anomalous,
and would defeat the purpose of doing unsupervised anomaly
detection in the first place. Because of this we place the FP and
FN score higher in terms of progress towards an innovative
and accurate anomaly detection algorithm.

It is important to note that all the classifiers miss labelled
several timestamps, with the image classifier having the largest
misclassification rate of the “smart” classifiers. The image
classifier missclassified 76 samples, while the Mahalanobis
classifier missed 59 samples, and the Combined classifier
missed only 43 samples out of the 720 samples used.

VI. CONCLUSION

In this work, we built an anomaly detection algorithm based
on the datasets given to us with GPS, battery, camera statuses
and images, and Inertial Measurement Unit (IMU) samples.
We pre-process the data by synchronizing them according
to the oncoming of measurements. We use PCA to break
down images down into features and arrange them in temporal
fashion such that we can see the relation of the current image

to its past images to separate the anomalous ones. We use
SSIM as our metric as it is versatile and takes into account the
luminescence, distance and contrast between the images. Since
the ground truth was not provided, we built our own labels for
the dataset. Then, we propose an abnormality detection method
to be applied in scenes where IMU data is available. Our
initial results show that the dynamic representations embed
action concepts that allow to mimic the normal behavior when
tracking. We used Mahalanobis distance thresholding that also
takes advantage of temporal information and making sure that
misclassifications of a single sample would not yield any false
results.
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