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Abstract—This paper studies the “age of information” (AoI) in
multi-hop networks with time-slotted transmissions and packet
loss in a setting where each node is both a source and monitor
of information. Nodes take turns broadcasting their information
to other nodes while also maintaining tables of updates for
the information received from other nodes. It is assumed that
transmission errors in the network occur with a fixed error
probability and that transmission errors are independent across
links. Using tools from graph theory, two algorithms are devel-
oped based on sequential flooding with repetitive transmissions
when transmission errors occur. These algorithms generate status
update dissemination schedules for any network with a connected
topology. The two algorithms differ in terms of whether the root
nodes in each sequential flooding tree resample their local infor-
mation when transmission errors occur. A lower bound on the
average peak AoI as a function of fundamental graph properties
is also derived for schedules generated by the algorithm without
resampling by the root nodes. Numerical results are presented
to evaluate the achieved average peak AoI for some canonical
graph topologies.

Index Terms—Age of information, multi-source, multi-hop,
packetized communications, transmission error.

I. INTRODUCTION

Information freshness is of critical importance in a variety of

networked monitoring and control systems such as intelligent

vehicular systems, channel state feedback, and environmental

monitoring as well as applications such as financial trading

and online learning. A recent line of research has considered

information freshness from a fundamental perspective under

an Age of Information (AoI) metric first proposed in [1]

and further studied in [2]–[19]. The main idea is that there

are one or more sources of information along with one or

more monitors. A source generates timestamped status updates

which are received by a monitor after some delay. The AoI

is defined as the difference between the current time and the

timestamp of the most recent status update at the monitor.

A recent line of work has considered the effect of packet

delivery errors on AoI in single-source, single-hop systems

[20]–[22]. Multi-source and/or multi-monitor extensions, also

in the single-hop context, were studied in [23]–[26]. Despite

the general interference constraints, the setting in all of these

studies assumes that all information flows are single-hop,

i.e., every source is directly connected to a corresponding

monitor. Hence there is a gap in understanding AoI in multi-

source, multi-hop systems with packet transmission errors,
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Fig. 1. A 5-node pan network. The nodes are indexed by V = {1, 2, 3, 4, 5}.
Here there exist two MCDS’s, S1 = {2, 3} and S2 = {2, 4}, so that L =
V − (S1 ∪ S2) = {1, 5} is the set of pseudo-leaf nodes.

where some information packets need to be relayed multiple

times to reach the monitor/destination.

This paper studies AoI in a general multi-source, multi-

hop, time-slotted network setting with explicit contention in

the sense that all delays between sources and monitors are

due to explicit channel uses by other nodes in the network.

Each node in the system is both a source and monitor of

information. Since the only assumption on the network is that

it is connected, some nodes in the network also serve as relays

to facilitate multi-hop dissemination of information between

nodes that are not directly connected. Using a graph theoretical

approach, this paper builds on our prior results in [17]–[19] by

generalizing our analysis to account for packet delivery errors

and unsuccessful transmissions of status updates. The main

contributions of this paper are:

1) Two explicit algorithms for constructing status update

dissemination schedules for any connected network.

2) A lower bound on the average peak AoI for the sched-

ules generated by the algorithm without resampling by

the root nodes in the sequential flooding trees.

We also provide numerical examples demonstrating the

achieved average peak AoI for some canonical network topolo-

gies. The results show that resampling by the root nodes tends

to provide greater gains in highly connected graphs.

II. SYSTEM MODEL

Consider an N -node wireless network with a connected

topology modeled by an undirected graph G = (V , E). An

example 5-node network is shown in Figure 1. The vertex

set V represents the nodes and the edge set E represents

the channels between the nodes in the network. Two vertices

i, j ∈ V are adjacent if edge ei,j is in set E . Equivalently,

there exists a channel between nodes i and j; as such, any

wireless transmission broadcast from node i is received at all



nodes in the one-hop neighborhood of i, which we denote as

N1(i). For example, in Figure 1, we have N1(2) = {1, 3, 4}.
Each node i ∈ V can generate samples of a local random

process Hi(t) at any time t∈Z with zero delay. In addition

to the status of its own process, every node in the network

is also interested in updates of the status of the remaining

N−1 processes in the network. We denote the status of process

Hi(t) from the perspective of node j at time t by H
(j)
i (t). At

any time t, each of the N nodes keeps a table of its most

recently obtained status update of each of the N processes,

giving a total of N2 parameters throughout the network. Out

of the N parameters at each node, one is obtained locally

by direct observation, and N − 1 are obtained by indirect

observation from the statuses disseminated by other nodes.

We assume transmissions of status update packets require

a fixed duration of one unit of time. Each packet includes

information about the one process that is being transmitted

and a time stamp indicating the time that the information

was generated. For i ∈ V , a packet transmitted by node i is

successfully received by node j with probability 1− ǫ, where

0 ≤ ǫ < 1 and j ∈ N1(i) ⇔ ei,j ∈ E . Packet transmission

errors are assumed to be independent across channels. We also

assume that the transmitter knows whether the transmission to

each of its neighbors was successful or not. The following

definition formalizes the age metric considered in this paper.

Definition 1 (Age). Assume the most recent status update of

the Hi process received at node j was timestamped at time

t′. The age of status update H
(j)
i at time t ≥ t′ is defined as

∆
(j)
i (t) , t− t′ for j 6= i.

Since each node is assumed to have zero-delay access to

the status of its local process, we have ∆
(i)
i (t) = 0 for any

i ∈ V and t. Hereafter, we only keep track of the N2 − N
indirectly observed statuses throughout the network. Finally,

we refer to a schedule as an ordered sequence of transmitting

nodes and the corresponding status update parameter that they

disseminate in each time slot.

III. SCHEDULE DESIGN FOR STATUS UPDATE

DISSEMINATION

In this section we provide two algorithms that generate

schedules for refreshing all of the status update parameters

throughout the network with any arbitrary topology. The main

idea for the schedule design is similar to the development

of a sequential flooding algorithm that generates a periodic

minimum-length schedule for a given network topology in

[17], [18] except that nodes retransmit status updates until

all “modified” one-hop neighbors have received at least one

successful update of the process. The notion of a “modified”

one-hop neighbor will be defined below.

To formalize this algorithm, recall that a set S ⊂ V of

vertices in a graph is called a dominating set if every vertex not

in S is adjacent to a vertex in S [27]. A minimum connected

dominating set (MCDS) S ⊂ V is a dominating set with

the properties that (i) the subgraph induced by S, G[S] is

connected and (ii) S has the smallest cardinality among all

connected dominating sets of G. The cardinality of any MCDS

is called the connected domination number of G and denoted

by γc. In general, the MCDS is not unique [28], [29].

Definition 2 (Pseudo-leaf vertex). We refer to a vertex as a

pseudo-leaf if it is not a member of any MCDS. That is i ∈ V
is a pseudo-leaf if i /∈ U where Sk ⊂ V for k = {1, 2, . . . ,K}
represent all K possible MCDS’s of G and

U ,

K⋃

k=1

Sk. (1)

Further, we refer to the set of all pseudo-leaf vertices of G by

L , V − U . (2)

Under this definition, every true leaf (i.e., every vertex with

degree one) is also a pseudo-leaf. An example illustrating

the notion of pseudo-leaf vertices and MCDS’s is shown in

Figure 1.

The sequential flooding schedule proceeds as follows. First,

a fresh update of the H1(t) process is transmitted by node 1

until it is successfully received by all of its neighbors. Then

this status is disseminated by the nodes in a MCDS if 1 ∈ L.

Otherwise if 1 /∈ L, or equivalently, node 1 is a member of

at least one MCDS, the H1(t) status is disseminated by the

remaining γc−1 nodes in the MCDS. Since transmission errors

may occur, we assume a retransmission policy where each

node i retransmits a status update until the update has been

received successfully by all nodes in the modified one-hop

neighborhood of node i, denoted by set N̄1(i). This process is

then repeated for the H2(t) process and so on until an update

of the HN (t) process is successfully received at least once

by all nodes in the network. This process then starts over

again with node 1. In the following we formalize the notion

of modified one-hop neighborhood and provide an example to

further clarify the schedule design.

Without loss of generality assume that the indices of the

nodes in the sequential flooding tree that disseminates updates

of the Hi(t) process form set Ssorted,i. The first index in this

sorted set represents node i, since every time in order to

refresh the Hi statuses throughout the network, first a fresh

update is required to be disseminated by node i. Algorithm 1

describes how this sorted set is obtained. For the mth element

in the sorted set Ssorted,i, m ∈ {1, 2, . . . , |Ssorted,i|}, where

|Ssorted,i| = γc + 1i∈L and i ∈ V , we define the modified

one-hop neighborhood of node j = Ssorted,i(m) as

N̄1(j) ,

[

N1(j)−
m−1⋃

m′=1

N1(Ssorted,i(m
′))

]

− {i}. (3)

In other words based on (3), node j does not need to refresh

the statuses at the nodes that have been updated by the previous

nodes in the sequential flooding tree. We also define the

cardinality of the modified one-hop neighborhood in (3) as

Ji,m , |N̄1(Ssorted,i(m))|. (4)

There are some subtleties to this schedule that can be

illustrated by considering an example in the setting shown



in Figure 1. Suppose node 1 successfully transmits a status

update to node 2 and that MCDS S1 is used for sequential

flooding. Node 2 retransmits the update until both node 3

and node 4 successfully receive the update once. Although

node 1 is in the one-hop neighborhood of node 2, it is

not in the modified one-hop neighborhood of node 2 since

node 1 has already been updated (directly). Similarly, when

node 3 retransmits the update, it only requires node 5 to

successfully receive the update once. Although node 2 is in

the one-hop neighborhood of node 3, node 2 received the

update (indirectly) earlier in this schedule. In this example

we have Ssorted,1 = {1, 2, 3}, N1(1) = {2}, N1(2) = {1, 3, 4},
N1(3) = {2, 5}, N̄1(1) = {2}, N̄1(2) = {3, 4}, N̄1(3) = {5},
J1,1=1, J1,2=2, and J1,3=1.

We consider two variations of the sequential flooding tree

schedule for updating the statuses throughout the network. The

only difference is with regards to the root node in each of the

sequential flooding trees. In the first variation, we assume the

root node i retransmits without resampling Hi(t) until all of

its neighbors successfully receive an update. In the second

variation, we assume that root node i resamples Hi(t) in each

retransmission until all of its neighbors successfully receive an

update. Note that each neighbor may receive a different sample

of Hi(t) in the second variation. The former case is easier to

analyze, whereas the latter case provides better performance.

In the following, Algorithm 1 and Algorithm 2 summarize

these two approaches.

Algorithm 1: Schedule design without resampling by

root nodes

1 initialize time, t← 0;

2 for node i = 1 : N do

3 if ∃ MCDS S̄ s.t. i ∈ S̄ then

4 S ← S̄;

5 else

6 S ← S̄ ∪ {i}, for any MCDS S̄ ⊂ V ;

7 end

8 Ssorted,i = Depth-First Search(G[S], i);
9 node i generates a fresh sample of Hi;

10 for m = 1 : |Ssorted,i| do

11 j = Ssorted,i(m);
12 t′ ← t;
13 while ∃ n ∈ N̄1(j) s.t. n has not received a

packet during interval (t′, t] or t′ == t do

14 node j transmits H
(j)
i (t′);

15 t← t+ 1;

16 end

17 end

18 end

19 go to line 2;

Observe that “Depth-First Search(G[S], i)” in Algorithm 1

describes an ordered list of vertices generated by performing a

depth-first search of the graph induced by S where the search

starts at root node i. The schedule generated by Algorithm 1 is

periodic in the absence of packet errors; however, when packet

errors are present it is not periodic in general.

Algorithm 2: Schedule design with resampling by root

nodes

1 initialize time, t← 0;

2 for node i = 1 : N do

3 if ∃ MCDS S̄ s.t. i ∈ S̄ then

4 S ← S̄;

5 else

6 S ← S̄ ∪ {i}, for any MCDS S̄ ⊂ V ;

7 end

8 Ssorted,i = Depth-First Search(G[S], i);
9 for m = 1 : |Ssorted,i| do

10 j = Ssorted,i(m);
11 t′ ← t;
12 while ∃ n ∈ N̄1(j) s.t. n has not received a

packet during interval (t′, t] or t′ == t do

13 if j == i then

14 node j generates a fresh sample of Hi;

15 end

16 node j transmits H
(j)
i (t);

17 t← t+ 1;

18 end

19 end

20 end

21 go to line 2;

Similarly, the schedule generated by Algorithm 2 is not

periodic in general.

IV. LOWER BOUND ON THE AVERAGE

PEAK AGE OF INFORMATION

In this section, we present an expression that lower bounds

the average peak AoI for the schedules generated by Algo-

rithm 1. Before proceeding, we first define the average peak

AoI. Figure 2 represents an example age ∆
(j)
i (t) for some

i and j where i, j ∈ V , i 6= j. The age value immediately

before arrival of the qth update of the Hi process at node j is

A
(j)
i (q) = a

(j)
i (q − 1) + τ

(j)
i (q), (5)

where a
(j)
i (q) represents the age of the qth update at its arrival

time at node j and τ
(j)
i (q) represents the interarrival time of

the (q− 1)th and qth updates for q∈{1, 2, . . .}. The initial age

is denoted by a
(j)
i (0).

a
(j)
i (0) a

(j)
i (1) a

(j)
i (2)

a
(j)
i (3) a

(j)
i (q − 1)

a
(j)
i (q)

τ
(j)
i (1) τ

(j)
i (2) τ

(j)
i (3) τ

(j)
i (q)

A
(j)
i (1)

A
(j)
i (2)

A
(j)
i (3)

A
(j)
i (q − 1)

A
(j)
i (q)

t

∆
(j)
i (t)

Fig. 2. An example age ∆
(j)
i (t) for some i and j where i, j ∈ V , i 6= j.



We define the average peak AoI over the N2−N indirectly

observed statuses throughout the network as

∆̄peak ,
1

(N2 −N)

∑

i,j∈V
i6=j

∆̄
(j)
i , (6)

where

∆̄
(j)
i = lim

Q→∞

1

Q

Q
∑

q=1

A
(j)
i (q). (7)

Theorem 1 represents a lower bound on the average peak

AoI of the schedules generated by Algorithm 1.

Theorem 1. The average peak AoI of the N2 −N indirectly

observed statuses throughout the network for the schedules

generated by Algorithm 1 is lower bounded by

∆̄peak = d̄+

N∑

i=1

γc+1i∈L∑

m=1

Ji,m∑

n=1

(
Ji,m
n

)
(−1)n+1

(1− ǫn)
, (8)

where

d̄ ,
1

N2 −N

∑

i,j∈V
i6=j

d(i, j) (9)

is the average distance of the network, and d(i, j) is the

distance in hops of the shortest path between nodes i and j.

Proof: From (5) and (6) we can write

∆̄peak=
1

(N2−N)

∑

i,j∈V
i6=j

[

lim
Q→∞

1

Q

Q
∑

q=1

a
(j)
i (q−1)+τ

(j)
i (q)

]

, (10a)

≥ d̄+
1

(N2−N)

∑

i,j∈V
i6=j

[

lim
Q→∞

1

Q

Q
∑

q=1

τ
(j)
i (q)

]

︸ ︷︷ ︸

,τ̄

, (10b)

= d̄+ τ̄ , (10c)

where (10b) is obtained considering (9) and the fact that

a
(j)
i (q) ≥ d(i, j) for all i, j and q, and τ̄ in (10c) is obtained

in Corollary 1. This completes the proof.

Corollary 1 represents an expression for τ̄ , which we refer

to as the average interarrival time.

Corollary 1. The average interarrival time of the N2 − N
statuses throughout the network for the schedules generated

by Algorithm 1 is given by

τ̄ =
N∑

i=1

γc+1i∈L∑

m=1

Ji,m∑

n=1

(
Ji,m
n

)
(−1)n+1

(1− ǫn)
. (11)

Proof: Without loss of generality, consider dissemination

of the Hi process throughout the network for i∈V . The Hi

process should be disseminated by the nodes in the sorted set

Ssorted,i in the schedule generated by Algorithm 1. Denote the

indices of the nodes in this sorted set by m∈{1,. . . ,γc+1i∈L},

and the number of transmissions by the mth node to update

the nodes in N̄1(Ssorted,i(m)) by ki,m. For ℓ={1,2,. . .} we get

Pr{ki,m = ℓ} = (1− ǫℓ)Ji,m − (1− ǫℓ−1)Ji,m . (12)

From (12) we can write

E[ki,m] =
∞∑

ℓ=1

ℓ Pr{ki,m = ℓ}, (13a)

=

∞∑

ℓ=1

ℓ[(1− ǫℓ)Ji,m − (1 − ǫℓ−1)Ji,m ], (13b)

=

∞∑

ℓ=1

ℓ







Ji,m∑

n=0

(
Ji,m
n

)

[(−ǫℓ)n−(−ǫℓ−1)n]






, (13c)

=

Ji,m∑

n=1

(
Ji,m
n

)

(−1)n
(

1−
1

ǫn

)[ ∞∑

ℓ=1

ℓ(ǫn)ℓ

]

, (13d)

=

Ji,m∑

n=1

(
Ji,m
n

)

(−1)n
(

1−
1

ǫn

)
ǫn

(1− ǫn)2
, (13e)

=

Ji,m∑

n=1

(
Ji,m
n

)
(−1)n+1

(1− ǫn)
. (13f)

Now, observe the number of transmissions required by any

of the nodes in a given sequential flooding tree in a schedule

generated by Algorithm 1 is independent of the number of

transmissions by any other transmitting node. Considering the

result in (13f) over all m ∈ {1,. . . ,γc+1i∈L} and i ∈ V , the

average interarrival time in (11) is obtained.

For ǫ = 0, note that E[ki,m] = 1, which gives τ̄ = Nγc +
|L|. This result is consistent with [17], [18].

V. NUMERICAL RESULTS

This section presents numerical examples to illustrate the

achieved average peak AoI of the schedules generated by

Algorithm 1 and Algorithm 2 and compares the achieved ages

with the lower bound in Theorem 1. Figure 3 and Figure 4

represent the achieved average peak AoI for fully-connected

networks (KN ) and ring networks (CN ), respectively, versus

the number of nodes N ∈ {3, . . . , 10} and for error prob-

abilities ǫ ∈ {0, 0.25, 0.5}. For the simulation lines, both

Algorithm 1 and Algorithm 2 are run over an interval of 105

time slots. The results show that the achieved average peak AoI

is an strictly increasing function of the number of nodes N
and error probability ǫ. When ǫ = 0, the schedules generated

by Algorithm 1 and Algorithm 2 are identical and have the

same average peak AoI.

For the fully-connected network case in Figure 3, each

transmitting node needs to update the tables at its N − 1
neighbors. For the ring network network case in Figure 4,

each transmitting node has at most 2 neighbors that it needs

to update. As a result, when ǫ > 0, resampling by root nodes

as specified in Algorithm 2 tends to lead to a more significant

reduction in the achieved average peak AoI in fully-connected

networks than in ring networks when compared to the average

peak AoI of schedules generated by Algorithm 1.
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Fig. 3. Achieved average peak AoI versus the number of nodes N and error
probabilities ǫ ∈ {0, 0.25, 0.5} for fully-connected networks KN .

3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

160

ǫ = 0.5, w/o resample, Algorithm 1
ǫ = 0.5, w/o resample, Theorem 1
ǫ = 0.5, w/ resample, Algorithm 2
ǫ = 0.25, w/o resample, Algorithm 1
ǫ = 0.25, w/o resample, Theorem 1
ǫ = 0.25, w/ resample, Algorithm 2
ǫ = 0, w/o resample, Algorithm 1
ǫ = 0, w/o resample, Theorem 1
ǫ = 0, w/ resample, Algorithm 2

N

∆̄
p
ea

k

Fig. 4. Achieved average peak AoI versus the number of nodes N and error
probabilities ǫ ∈ {0, 0.25, 0.5} for ring networks CN .

VI. CONCLUSION

This paper studied the age of information in a multi-source

multi-hop status update system with nodes communicating

over unit-delay channels with packet transmission losses. We

presented two algorithms that generate schedules for dissem-

ination of status updates throughout any given network with

a connected topology. For the schedules constructed by the

algorithm without resampling by the root nodes of the flooding

trees, we derived a closed-form expression that lower bounds

the achieved average peak AoI. Future directions of this work

include studying the effect of packet losses due to collisions

where multiple nodes transmit simultaneously.
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