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Abstract—We explore a blind strategy for cold-startup of
an adaptive equalization structure suitable for use with pulse-
position modulated (PPM) signals. In particular, we explore
a combination of two recent results: [1] and [2]. In [1], a
novel block symbol-rate equalizer was proposed where critically-
sampled PPM systems can perfectly equalizer an FIR channel.
Another recent result [2] proposed the only known blind adaptive
algorithm for adapting a conventional chip-rate equalizer for
PPM signaling. We explore the behavior of the blind adaptive
algorithm when one of the key assumptions necessary for
global convergence is violated, and show that even without this
assumption it is nonetheless a good candidate for cold-startup of
the block equalizer structure.

I. I NTRODUCTION

Pulse-position modulation (PPM) is a digital modulation
format that has seen considerable attention over the past
several decades, particularly in applications which require
high energy efficiency. Traditional uses of PPM have been in
situations with little or no intersymbol interference (ISI), and
thus until recently there had been little motivation to explore
equalization of such signals to the extent that equalization has
been explored for linearly modulated signals. In the 1980’s
and early 1990’s, much attention was given toM -ary PPM
for its use on optical and nondirected infared channels (see
for example [3] and references therein). More recently, PPM
has been considered by the ultra-wideband (UWB) community
for so-called impulse radios [4]. While several studies of ISI
compensation for PPM were conducted a decade ago in the
optical communications context [3][5], the recent interest in
PPM for use in high-speed UWB communication over short
range has revived interest in equalization of PPM signals
[1][2].

In the absense of ISI, PPM is appealing because it permits
the use of relatively simple non-coherent detection schemes
[6]. The multipath spread of a typical UWB indoor channel
may be as large as several hundred nanoseconds [4], however,
which results in significant ISI at the high data rates for which
UWB is intended. While the optimum PPM detector in ISI is
the maximum likelihood sequence estimator (MLSE) which
was investigated in [7], its complexity is usually too high
for practical implementation, and thus suboptimal schemesare
preferred in practice.

In this paper, we explore a combination of two recent
results: [1] and [2]. In [1], it was shown that the structure of the

PPM signal has properties that permit perfect equalizationwith
a finite-length block symbol-rate equalizer. This contradicts
conventional wisdom about equalization for more traditional
modulations like pulse amplitude modulation (PAM), since
for PAM systems it is well-known that a finite-length lin-
ear equalizer cannot perfectly invert an FIR channel unless
oversampling is employed [8]. By exploiting the structure of
the PPM signal, it was shown that critically-sampled PPM
systems enable perfect linear equalization — no oversampling
is required if a particular block equalizer structure is employed.
The scheme in [1] requires channel knowledge or that training
symbols are sent from the transmitter. However, another recent
result [2] proposed ablind adaptive algorithm for adapting a
conventional scalar chip-rate equalizer. The algorithm in[2] is
based on the third-moment of the PPM signal, and is shown to
be globally convergent under some simplifying assumptions.
We will show how to employ the blind algorithm in [2] for
cold startup of the block equalizer of [1], and demonstrate
that it leads to an open-eye equalizer. One of the simplifying
assumptions in [2] is that the PPM alphabet size,M , tends
toward infinity. Thus, we will additionally explore the behavior
of the blind algorithm whenM is finite.

II. B LOCK EQUALIZER FOR COMPLETE ISI REMOVAL

A. System Model

M -ary PPM is an orthogonal transmission scheme where
a symbol consists ofM chips, only one of which is non-
zero. PPM can be thought of as a block coding scheme
where information is conveyed by the location of the non-
zero sample within the block ofM chips. Thus, the symbol
alphabet comprises theM columns of the identity matrixIM .
We assume that adjacent symbols are sent with no guard
time between them, and as in [5] we assume a discrete-
time model where each chip is sampled once. We denote the
symbol transmitted at timen by x[n] ∈ {e0, . . . ,eM−1}.
While we assume that symbols are i.i.d., the resulting chip
rate sequence is certainly not, though it is cyclostationary with
period M . Clearly, the PPM source is not zero-mean, and
µx , E[x[n]] = 1

M 1M×1.
The system model for the transmitter, channel, and equal-

izer/receiver is shown in Fig. 1. The i.i.d.M -ary PPM symbols
x[n] are transmitted serially through a causal linear time-
invariant FIR channel of lengthNh with impulse response



h = [h[0] . . . h[Nh − 1]]⊤ and additive white Gaussian noise
w[n] where each sample has varianceσ2

w assumed to be
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Fig. 1. Block Equalizer System Model

Nf received vector at timen is then

ȳ[n] = Hx̄[n] + w̄[n] (1)

whereȳ[n] ∈ R
Nf is the stacked vector of received symbols,

Nc , Nf +Nh −1 is the combined length of the channel and
feedforward equalizer,H ∈ R

Nf×Nc is the Tœplitz channel
convolution matrix defined as[H]i,j = h[j−i], x̄[n] ∈ R

Nc is
the serialized vector of transmitted PPM symbols, andw̄[n] ∈
R

Nf is the AWGN. Note that, as in [5], our receiver employs
coherent reception in the sense that it preserves the polarity of
the received signal (as opposed to simple energy detection).

To exploit the cyclostationary source statistics, we consider
a symbol-rateblock equalizer (as opposed to a chip-rate
scalar equalizer). Since this block equalizer can alternatively
be thought of as a single periodically time-varying chip
rate equalizer, it has equivalent computational complexity
to a traditional single scalar equalizer operating at the chip
rate. Thus, we could filter the received signal with a block
feedforward filterF ∈ R

Nf×M where each column ofF
effectively equalizes each of theM polyphases of a PPM
symbol. However, as shown in [1], a PPM signal can be
projected into a subspace of reduced dimension, i.e. from
dimensionM to dimensionM − 1, without changing the
Euclidean distance properties of the signal. Thus, insteadof
equalizing a given symbol in the traditional sense, we consider
a reduced filterF ∈ R

Nf×M−1 which performs equalization
in the signal subspace of dimensionM − 1. Then, before
making decisions, we can re-project the signal back into the
traditional PPM signal set of dimensionM with a projection
matrix U⊤

M , to be described below.
The decision device that we employ here is the minimum

Euclidean distance detector, which simply amounts to choos-
ing the largest element of the lengthM received vector [9].
While we have chosen this decision device for its simplicity
and low latency, we note that it is the optimal (i.e. maximum
likelihood) PPM decision device in the memoryless AWGN
channel in the absence of ISI. We letQ(·) denote the nonlinear
decision-making operation, so that the decision device output
can be writtenx̂[n] = Q(U⊤

M x̃[n]) where the functionQ(·)

is defined as

Q(U⊤

M x̃[n]) = ei (2)

with i being the index of the largest element in the vector
U⊤

M x̃[n].

B. Equalizer Coefficients for Complete ISI Removal

We now consider the conditions that permit a feedforward
equalizer to perfectly remove the ISI (i.e. the “zero-forcing”
equalizer). For more traditional modulations like pulse am-
plitude modulation (PAM), it is well-known that a finite-
length linear equalizer cannot perfectly invert an FIR channel
unless oversampling or multiple sensors are employed [8]. It
is perhaps a bit surprising that, even without oversampling, all
ISI can be removed in PPM systems with only a finite-length
feedforward filter. Since the decision device is invariant to DC
offsets (i.e. adding some constant to all chips of a particular
symbol), we are willing to accept an equalizer that introduces
arbitrary DC offsets to a given symbol if it reduces the the
number of parameters in the equalizer. Because of this extra
degree of freedom, we can formulate the equalizer design
criterion in a space of reduced dimension so that the equalizer
operates only in the relevent subspace. First, we present a key
lemma from [1] which serves to motivate this approach:

Lemma 1.
The PPM minimum Euclidean distance detector functionQ(·)
defined in (2) satisfies

Q(x[n]) = Q
(
U⊤

MUMx[n]
)

for any x[n] ∈ R
M and UM ∈ R

M−1×M defined recursively
as

UM =

[√
M−1

M −
√

1
M(M−1)11×M−1

0M−2×1 UM−1

]

with

U2 =
1√
2

[
1 −1

]
.

We note thatUM is upper triangular andU⊤

MUM = IM −
1
M 1M×M .

Proof: See [1]
It is worth considering the geometric interpretation of the

projection viaUM . As we noted above, a PPM signal has non-
zero mean. By simple coordinate translation of a PPM signal
set (i.e. by subtracting the mean from each chip), we arrive
at a new signal set which is the so-called transorthogonal or
simplex set [9]. Translation of the origin does not affect the
Euclidean distance properties of the signal set. It is also well-
known that thedimensionalityof anM -ary simplex signal set
is M −1 [9]; that is, through appropriate choice of coordinate
system, anM -ary simplex signal set can be represented with
just M − 1 chips. Furthermore, anM -ary PPM signal set can
be projected into anM -ary simplex set represented byM − 1
chips, with identical Euclidean distance properties; thisis the
role of UM . Finally, we note from [1] that projection viaUM



is invariant to DC offsets, so for some vectorx ∈ R
M and

some scalarb,

UM (x + b1M×1) = UMx. (3)

Thus, by building a block equalizer which outputs symbols
x̃[n] ∈ R

M−1 of reduced dimension, it is Euclidean distance
preserving, and is invariant to DC shifts at the equalizer input.

Next we make several definitions to aid our development of
the equalizer coefficients. Again, in addition to the equalizer
lengthNf , the equalizer accepts one other design parameter,
∆, which represents the desired symbol delay through the
channel/equalizer chain. By defining

E⊤

∆ ,
[
0M×M∆ IM 0M×Nc−M(∆+1)

]
(4)

where E∆ ∈ R
Nc×M , we can express the delayed symbol

vector in terms of the source symbol stream as

x[n − ∆] = E⊤

∆x̄[n]. (5)

Our goal, then, is to choose equalizer coefficients so that
x̃[n] ≈ UMx[n − ∆] where we note the appearance of
UM serves to project the source signal into the space of
reduced dimension so that it is compatible with the equalizer
outputx̃[n]. Since our focus is on an equalizer with complete
ISI removal, we temporarily ignore the noise, and review
the conditions under which the equalizer output matches the
source sequence. The ISI is eliminated if the mean square
error (MSE) between the equalizer output and source signals
is exactly zero in the absence of noise, or when

Jmse(F ,∆) = E[||x̃[n] − UMx[n − ∆]||22] (6)

= 0.

With the source autocorrelation for PPM given by

Rxx , E[x̄[n]x̄⊤[n]]

=
1

M2
1Nc×Nc

+
1

M
(INc

M

⊗ (IM − 1

M
1M×M ).

we defineΦ⊤
xxΦxx = Rxx as the Cholesky decomposition of

the source autocorrelation, whereΦxx ∈ R
Nc−Nc/M+1×Nc .

Letting H
′
, HΦ

⊤
xx the MSE expression reduces to [1]

Jmse(F ,∆) =
∣
∣
∣

∣
∣
∣F

⊤
H

′ − UME⊤

∆Φ
⊤

xx

∣
∣
∣

∣
∣
∣

2

fro

where||·||fro denotes the Frobenius norm. Thus, the condition
for perfect equalization is that the MSE is zero, or

H
′⊤

F = ΦxxE∆U⊤

M . (7)

For the existence of an exact solution ofF for this linear
system,H′ ∈ R

Nf×Nc−Nc/M+1 must be tall and full rank,
leading to the following two conditions for perfect equaliza-
tion:

1) Equalizer Length Condition:For F to satisfy (7) for
arbitrary ∆, H

′ must be a tall matrix. Hence, it is
required that

Nf > Nh(M − 1) (8)

2) Channel Disparity Condition:For F to satisfy (7) for
arbitrary∆, H

′ must have full column rank.

Thus, the finite-length block equalizer structure can succeed
in perfectly equalizing the channel, so long as the length
and disparity conditions are satisfied. In the next section
we consider blind adaptation of ascalar chip-rate equalizer,
and subsequently show how this can be used with theblock
symbol-rate equalizer described above.

III. B LIND ADAPTIVE ALGORITHM FOR PPM

A. Review of Algorithm

Recently, a globally convergent blind adaptive equalization
algorithm was proposed for PPM modulations [2]. The scheme
employs a chip-rate FIR equalizerf ∈ R

Nf which operates on
a zero-mean version of the received signal. That is, the mean
of the received signal is subtracted before equalization, so that
the equalizer output can be writteñx[n] = f⊤(ȳ[n] − µy1)
where µy is the mean of the received signal. The equalizer
output is then serial-to-parallel converted and fed M chipsat a
time into the decision device. The proposed algorithm is based
on third-order moments, and adapts the equalizer coefficients
to maximize the objective function

J(f) =
∣
∣E[x̃3[n]]

∣
∣ (9)

while constraining the norm of the equalizer taps to be 1.
Intuitively, the rationale for this choice of objective function
stems from the fact that a PPM signal is sparse, and is thus
characterized by large skewness. Since an ISI channel serves
to reduce the skewness in a PPM signal, maximizing the
skewness (or third-moment) should serve to reduce the ISI in
a PPM signal. It is worth pointing out that an added benefit of
employing the third-moment is its insensitivity to noise [2]. As
is common in the analysis of blind algorithms (e.g. [10]), the
authors assume that the equalizer is sufficiently long so that the
analysis can be performed in the combined channel/equalizer
spacec = H

⊤f . In addition, however, it is assumed in [2] that
the PPM alphabet sizeM → ∞. Under these assumptions,
the authors succeed in proving that the objective function
exhibits maxima only at the desired equalizer settings, i.e. at
zero-forcing (ZF) solutions. A corresponding steepest ascent
algorithm emerges as

f ′[n + 1] = f [n] + µ∇fJ(f)

f [n + 1] = f ′[n + 1]/
√

f ′⊤[n + 1]f ′[n + 1]

where the gradient in [2] is approximated by∇fJ(f) ≈
sgn(x̃[n])x̃2[n]y[n]. We note that the true gradient is
∇fJ(f) = sgn(E[x̃3[n]])E[x̃2[n]y[n]], and thus the chosen
gradient approximation is perhaps a more accurate gradient
estimate of the alternate objection functionJ ′(f) = E[|x̃3[n]|]
since

∇fJ ′(f) = E[sgn(x̃3[n])x̃2[n]y[n]]

= E[sgn(x̃[n])x̃2[n]y[n]]

≈ sgn(x̃[n])x̃2[n]y[n]



due to the fact that for a sufficiently small stepsizeµ, the natu-
ral averaging inherent to stochastic gradient ascent algorithms
effectively allows us to omit theouter expectation. Conse-
quently, in the sequel, we employ a slightly more accurate
gradient estimate forJ(f) yielding the update equation

f [n + 1] = f [n] + µ · sgn
(∑

m x̃3[m]
) (∑

m x̃2[m]y[m]
)

(10)

where the indexm on the sums is taken over the most recent
N symbols for some window sizeN . Nevertheless, to the best
of our knowledge, this is the only known globally convergent
algorithm for blind adaptation of equalizers used with PPM
signals.

B. Discussion of Maxima for FiniteM

While the results of [2] are very encouraging, the behavior
of the algorithm for finiteM is unclear. Some interesting
questions might include:

• Do the desired maxima simply move away from the ZF
solutions whenM is finite?

• If so, how far away do they move?
• Do additional false local maxima appear for finiteM?

Ideally, we would like to answer these questions analytically.
However, without lettingM → ∞, the expression for the
objective function (9) cannot readily be simplified due to the
appearance of many non-zero terms in the third-order moment
of the PPM signal. Nevertheless, we hope to provide some
evidence that, indeed, the maxima only move slightly away
from the ZF solutions, and that additional false local maxima
do not seem to appear.

1) Exact locations of maxima forNc = 2: For the special
case where the combined channel/equalizer responsec has
length Nc = 2, we can plot the objective function and
calculate the exact locations of all maxima as a function of
M . To impose the constraint that the norm of the taps must
be unity, we re-parameterize the 2 taps in polar coordinates,
taking c0 = sin θ and c1 = cos θ. We then seek the angle
θ that maximizes the objective functionJ(c) =

∣
∣E[x̃3[n]]

∣
∣.

Ideally, we hope that the maxima occur near the zero forcing
solutions (as well as their negatives, as described in [2]),or
c ∈ {[+1, 0], [−1, 0], [0,−1], [0,+1]}, which corresponds to
θ = nπ/2 for any integern. A plot of the objective function
over θ for M = 4 andM = 128 is shown in Fig. 2. As can
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Fig. 2. Objective function forNc = 2 andM ∈ {4, 128}

be seen, the objective function only exhibits maximanear the
desired ZF solutions; no additional false local maxima appear.
By expanding the objective function in terms of its moments
from [2], we can calculate the precise location of the maxima,
and can show that they occur at

θ = − tan−1

(

3 + M ±
√

M2 + 6M + 5

2

)

+ nπ

for any integern. As M → ∞, this expression indeed reduces
to θ = nπ/2 for any integern. Thus, for the trivial case
where the combined channel/equalizer response has length 2,
we have a precise expression for the distance between the
true maximizers ofJ(c) and the ZF solutions. Indeed, even
for small M , the maxima are quite close to the ZF solutions.
In addition, we reiterate that no additional false local maxima
appear forNc = 2.

2) Numerical Investigation of Maxima forNc > 2: While
the results forNc = 2 are encouraging, the results provide
no insight into the behavior of the objective function for
larger values ofNc. Unfortunately, calculating the maxima
of the objective function rapidly becomes intractable evenfor
Nc = 3. However, we attempt to give evidence that suggests
the results forNc = 2 do indeed apply for larger lengths.
We proceed by conducting a numerical search over10Nc−1

initializations uniformly spaced on the unitNc − 1 sphere,
and employ the uphill simplex method [11] in attempt to
characterize all maxima of the objective function. Note that
we again need to re-parameterize the cost function in polar
coordinates so that the unit norm constrain is imposed. For a
given Nc, we requireNc − 1 anglesθi for i = 0, . . . , Nc − 2,
and the chosen parameterization is given by:

ci =

{

sin θi

∏i−1
j=0 cos θj 0 ≤ i ≤ Nc − 3

∏Nc−2
j=0 cos θj i = Nc − 2

.

For each of the10Nc−1 initializations and their correspond-
ing maxima, we calculate the Euclidean distance of each
maxima from its nearest ZF solution (including negated ZF
solutions). As the number of initalizations to consider grows
exponentially with the number of channel/equalizer taps, we
are only able to search the range2 ≤ Nc ≤ 6. The results are
shown in Fig. 3, where we see that the maxima for finite
M are very close to ZF solutions in general. Again, for
this numerical search, the only maxima appear to be near
ZF solutions; no additional local maxima were found. We
also note that asM → ∞, the locations of the maxima do
indeed approach the ZF solutions as reported in [2]. While
this exercise is certainly not a definitive proof, it does suggest
that the objective function may only exhibit “good” maxima
that are very near the desired ZF solutions even for finite
M . In addition, we note that all of the convergent values in
this experiment correspond to “open-eye” solutions where the
decision device makes no errors in the absence of noise.

IV. SWITCHING FROM SCALAR TO BLOCK EQUALIZER

We now investigate use of the algorithm (10) for cold
startup of the scalar chip-rate equalizer, followed by switching
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Fig. 3. Proximity of maxima to ZF solutions as a function ofM

to the block symbol-rate equalizer of section II which can
subsequently be adapted with decision-directed least mean
squares (DD-LMS). It is well known that DD-LMS is not
a good choice for cold-startup from initializations which are
not open-eye. With the recent discovery of a suitable algorithm
for cold-startup of a scalar equalizer [2] (and our results from
section III which suggest that it always converges near a ZF
solution for finiteM ), we expect that this algorithm can be
used for cold-startup of the block equalizer.

Recall that for the blind algorithm (10), the equalizer
output for a single chip of theM -PPM signal can be written
x̃[n] = f⊤(ȳ[n]−µy1). Equivalently, we could write an entire
equalized symbol asF⊤

∗ (ȳ[n] − µy1) where

F∗ =






f 0 ··· 0

0 f
...

. . . 0
f




 ∈ R

Nf +M−1×M . (11)

Projecting the equalized result into the relevantM −1 dimen-
sional subspace gives:

x̃[n] = UMF
⊤

∗ (ȳ[n] − µy1)

= UMF
⊤

∗
︸ ︷︷ ︸

,F⊤

init

ȳ[n]

where we use the fact thatUMF
⊤

∗ 1 = 0 which follows
from (3). A candidate cold startup-scheme forM -PPM then
emerges:

1) Adapt a scalar chip-rate equalizerf using (10).
2) After sufficient number of iterations, some form of

symbol synchronization (i.e. identification of symbol
boundaries) needs to be performed. This amounts to
an M -ary hypothesis testing problem which could be
solved by choosing the symbol boundary so that all
symbols to have roughly equal power.

3) We then switch to using the block symbol-rate equalizer
with the equalizer coefficients set toF = F∗U⊤

M where
F∗ is defined in (11).

4) Adaptation of the block equalizer can then proceed using
DD-LMS via

F [n + 1] = F [n] − µȳ[n](x̃[n] − UM x̂[n])⊤

where µ is a small positive step-size which serves to
average out the noise in the gradient estimate.

V. NUMERICAL RESULTS AND CONCLUSION

A simulation was conducted using 4-PPM transmission over
1000 randomly generated Rayleigh WSSUS channels with
length Nh = 10 and 10 dB SNR. The equalizer length was
chosen to beNf = 30. The startup procedure outlined above
was employed, where the blind algorithm in step 1 was given
1000 PPM symbols before switching to the decision-directed
block equalizer. We note that DD-LMS will in general con-
verge to the MMSE equalizer solution, and not the ZF solution.
Nevertheless, for each of the 1000 channel realizations, we
observed the ability of the cold startup scheme to sufficiently
open the eye so that there would be no errors if the noise
were removed. As hoped, the equalizer succeeded in opening
the eye for all 1000 realizations, suggesting that indeed the
cold startup procedure is a good candidate for use with the
block equalizer structure.

We have presented a cold-startup strategy which combines
the techniques presented in [1] and [2], and seems to be
a promising choice for blind equalization of PPM signals.
Future work could characterize (or bound) the exact locations
of the maxima of (9), and show that they lie in the regions
of convergence for DD-LMS, thus providing more analytical
evidence in support of this cold-startup strategy.
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