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Abstract—We explore a blind strategy for cold-startup of PPM signal has properties that permit perfect equalizatiitim
an adaptive equalization structure suitable for use with pulse- g finite-length block symbol-rate equalizer. This contcssli
position modulated (PPM) signals. In particular, we explore  ¢,nyentional wisdom about equalization for more tradition

a combination of two recent results: [1] and [2]. In [1], a . . . . .
novel block symbol-rate equalizer was proposed where critically- modulations like pulse amplitude modulation (PAM), since

sampled PPM systems can perfectly equalizer an FIR channel. for PAM systems it is well-known that a finite-length lin-
Another recent result [2] proposed the only known blind adaptive ear equalizer cannot perfectly invert an FIR channel unless
algorithm for adapting a conventional chip-rate equalizer for gversampling is employed [8]. By exploiting the structuffe o
PPM signaling. We explore the behavior of the blind adaptive the PPM signal, it was shown that critically-sampled PPM

algorithm when one of the key assumptions necessary for t bl fect li lizati i
global convergence is violated, and show that even without this Systems enable periect linear equalization — no oversampl

assumption it is nonetheless a good candidate for cold-startup of IS required if a particular block equalizer structure is ésygpd.
the block equalizer structure. The scheme in [1] requires channel knowledge or that trginin

symbols are sent from the transmitter. However, anothemtec
result [2] proposed dlind adaptive algorithm for adapting a

Pulse-position modulation (PPM) is a digital modulatiowonventional scalar chip-rate equalizer. The algorithif2]ns
format that has seen considerable attention over the phated on the third-moment of the PPM signal, and is shown to
several decades, particularly in applications which nequibe globally convergent under some simplifying assumptions
high energy efficiency. Traditional uses of PPM have been We will show how to employ the blind algorithm in [2] for
situations with little or no intersymbol interference (JISand cold startup of the block equalizer of [1], and demonstrate
thus until recently there had been little motivation to expl that it leads to an open-eye equalizer. One of the simplifyin
equalization of such signals to the extent that equalipatiss assumptions in [2] is that the PPM alphabet sizé, tends
been explored for linearly modulated signals. In the 1980tsward infinity. Thus, we will additionally explore the befiar
and early 1990's, much attention was givenp-ary PPM of the blind algorithm whenV/ is finite.
for its use on optical and nondirected infared channels (see
for example [3] and references therein). More recently, PPM
has been considered by the ultra-wideband (UWB) communfly System Model
for so-called impulse radios [4]. While several studies df IS M-ary PPM is an orthogonal transmission scheme where
compensation for PPM were conducted a decade ago in thaymbol consists of\f chips only one of which is non-
optical communications context [3][5], the recent intéries zero. PPM can be thought of as a block coding scheme
PPM for use in high-speed UWB communication over showthere information is conveyed by the location of the non-
range has revived interest in equalization of PPM signatero sample within the block af/ chips. Thus, the symbol
[1][2]. alphabet comprises th& columns of the identity matrid ;.

In the absense of ISI, PPM is appealing because it permit®e assume that adjacent symbols are sent with no guard
the use of relatively simple non-coherent detection sclsenteme between them, and as in [5] we assume a discrete-
[6]. The multipath spread of a typical UWB indoor channeime model where each chip is sampled once. We denote the
may be as large as several hundred nanoseconds [4], howesygmbol transmitted at timex by z[n] € {eo,...,en—1}
which results in significant ISI at the high data rates forahhi While we assume that symbols are i.i.d., the resulting chip
UWSB is intended. While the optimum PPM detector in ISI isate sequence is certainly not, though it is cyclostatipmath
the maximum likelihood sequence estimator (MLSE) whicperiod M. Clearly, the PPM source is not zero-mean, and
was investigated in [7], its complexity is usually too highu, = E[x[n]] = ﬁlM“-
for practical implementation, and thus suboptimal scheanes The system model for the transmitter, channel, and equal-
preferred in practice. izer/receiver is shown in Fig. 1. The i.i.d/-ary PPM symbols

In this paper, we explore a combination of two recent[n] are transmitted serially through a causal linear time-
results: [1] and [2]. In [1], it was shown that the structuféh® invariant FIR channel of lengthv, with impulse response

I. INTRODUCTION

1. BLOCK EQUALIZER FOR COMPLETEISI REMOVAL



h = [n[0] ... h[N, —1]]T and additive white Gaussian noisds defined as
w(n] where each sample has varianeg assumed to be

T 7 e .
uncorrelated with the data. A vector model for the length QUyZ[n]) = e @
with ¢ being the index of the largest element in the vector
w U, Z[n].
m[{n] P/S Y B. Equalizer Coefficients for Complete I1SI Removal
M We now consider the conditions that permit a feedforward
equalizer to perfectly remove the ISI (i.e. the “zero-fargi
-t - - -0 0" P ~ T equalizer). For more traditional modulations like pulse-am
' y[n] &[n] [n]! plitude modulation (PAM), it is well-known that a finite-

>|S/P = F' a Uy, P Q() —— length linear equalizer cannot perfectly invert an FIR ctedn

| M M-1 M M, unless oversampling or multiple sensors are employed {8]. |
—————————————————————— is perhaps a bit surprising that, even without oversampkitig
Fig. 1. Block Equalizer System Model ISI can be removed in PPM systems with only a finite-length
feedforward filter. Since the decision device is invarianbC
N; received vector at time is then offsets (i.e. adding some constant to all chips of a pasicul
symbol), we are willing to accept an equalizer that intraghuc
g[n] = HE[n] + @[n] (1) arbitrary DC offsets to a given symbol if it reduces the the

number of parameters in the equalizer. Because of this extra
whereg[n] € R/ is the stacked vector of received symbolsgegree of freedom, we can formulate the equalizer design
N = Ny + Ny, —1is the combined length of the channel angriterion in a space of reduced dimension so that the ecraliz
feedforward equalizert € RY7*Ne s the Teeplitz channel gperates only in the relevent subspace. First, we preseey a k

convolution matrix defined a8J; ; = h[j—il, Z[n] € RYiS  |emma from [1] which serves to motivate this approach:
the serialized vector of transmitted PPM symbols, arjd] €

RV’ is the AWGN. Note that, as in [5], our receiver employ&eémma 1. . .
coherent reception in the sense that it preserves the fyotdri "€ PPM minimum Euclidean distance detector functi{r)
the received signal (as opposed to simple energy detectiorfjefined in (2) satisfies
To exploit the cyclostatiqnary source statistics, we qdmsi Qz[n]) = Q (UJ\—ZUMa:[n])
a symbol-rateblock equalizer (as opposed to a chip-rate
scalar equalizer). Since this block equalizer can alterelgt for any x[n] € RM and Uy, € RM~1*M defined recursively

be thought of as a single periodically time-varying chigs
M-1 1
to a traditional single scalar equalizer operating at thip ch Uy=|V M Y M(Ml)hXMl]
Un—1

rate. Thus, we could filter the received signal with a block
feedforward filter 7 € RNs*M where each column ofF \ith
effectively equalizes each of th& polyphases of a PPM 1

. . =—|1 -1}.
symbol. However, as shown in [1], a PPM signal can be U ﬂ[ ]

projected into a subspace of reduced dimension, i.e. fr . . -
dimension M to dimensionM — 1, without changing the CU\Fe note thal/, is upper triangular andU,, Uns = I —
Euclidean distance properties of the signal. Thus, inst#ad 7 L M-
equalizing a given symbol in the traditional sense, we @w@Tsi Proof: See [1] |
a reduced filtecF € RNs*M~1 which performs equalization It is worth considering the geometric interpretation of the
in the signal subspace of dimensigd — 1. Then, before projection vial/;;. As we noted above, a PPM signal has non-
making decisions, we can re-project the signal back into tizero mean. By simple coordinate translation of a PPM signal
traditional PPM signal set of dimensiaid with a projection set (i.e. by subtracting the mean from each chip), we arrive
matrix U}, to be described below. at a new signal set which is the so-called transorthogonal or
The decision device that we employ here is the minimusimplex set [9]. Translation of the origin does not affeat th
Euclidean distance detector, which simply amounts to chodsuclidean distance properties of the signal set. It is alsth-w
ing the largest element of the lengtil received vector [9]. known that thedimensionalityof an M -ary simplex signal set
While we have chosen this decision device for its simplicitis M — 1 [9]; that is, through appropriate choice of coordinate
and low latency, we note that it is the optimal (i.e. maximuraystem, anM -ary simplex signal set can be represented with
likelihood) PPM decision device in the memoryless AWGNust M — 1 chips. Furthermore, ai/-ary PPM signal set can
channel in the absence of ISI. We [2¢-) denote the nonlinear be projected into ad/-ary simplex set represented By — 1
decision-making operation, so that the decision deviceuiut chips, with identical Euclidean distance properties; thithe
can be written[n] = Q(U,,#[n]) where the functionQ(-) role of U,,. Finally, we note from [1] that projection Vi&/,,

rate equalizer, it has equivalent computational compfexit
Onr—2x1




is invariant to DC offsets, so for some vectore RM and 2) Channel Disparity Conditionfor F to satisfy (7) for
some scalab, arbitrary A, H' must have full column rank.

Uni( + blarx1) = Una. 3) Thus, the finite—length block equalizer structure can sedce

in perfectly equalizing the channel, so long as the length

Thus, by building a block equalizer which outputs symboland disparity conditions are satisfied. In the next section

Z[n] € RM~1 of reduced dimension, it is Euclidean distanceve consider blind adaptation of scalar chip-rate equalizer,

preserving, and is invariant to DC shifts at the equalizpuin and subsequently show how this can be used withbibek

Next we make several definitions to aid our development efmbol-rate equalizer described above.

the equalizer coefficients. Again, in addition to the eqeali

length Ny, the equalizer accepts one other design parameter,  !ll. BLIND ADAPTIVE ALGORITHM FORPPM

A, which represents the desired symbol delay through tag Review of Algorithm

channel/equalizer chain. By defining Recently, a globally convergent blind adaptive equalorati

algorithm was proposed for PPM modulations [2]. The scheme
, employs a chip-rate FIR equalizgre RYs which operates on
where Ex € RNeXM we can express the delayed symbo) zero-mean version of the received signal. That is, the mean
vector in terms of the source symbol stream as of the received signal is subtracted before equalizatiorhat
zln — A] = EL&[n). (5) the equalizer output can be writteirin] :_fT(g[n] —hyl)
where i, is the mean of the received signal. The equalizer
Our goal, then, is to choose equalizer coefficients so thaitput is then serial-to-parallel converted and fed M claipa
Z[n] =~ Uymx[n — A] where we note the appearance ofime into the decision device. The proposed algorithm iebtas
U, serves to project the source signal into the space @ third-order moments, and adapts the equalizer coefficien
reduced dimension so that it is compatible with the equaliz& maximize the objective function
outputZ[n]. Since our focus is on an equalizer with complete
ISI removal, we temporarily ignore the noise, and review J(f) = |E[533[”H| 9)

the conditions under which .the ?q‘ﬂa”zer _OUtDUt matches tWﬁile constraining the norm of the equalizer taps to be 1.
source sequence. The ISl is Qllmlnated if the mean Squ"i’ﬁ%itively, the rationale for this choice of objective fttion
error (MSE) between the equalizer output and source Signgl8 s from the fact that a PPM signal is sparse, and is thus
is exactly zero in the absence of noise, or when characterized by large skewness. Since an ISI channelsserve
Jmse(F,A) = E[|&[n] — Uyxln—AJ|2] (6) to reduce the §kewness in a PPM signal, maximizing thg
- 0 skewness (or third-moment) should serve to reduce the ISl in
' a PPM signal. It is worth pointing out that an added benefit of
With the source autocorrelation for PPM given by employing the third-moment is its insensitivity to noisé. [Rs
A T is common in the analysis of blind algorithms (e.g. [10]k th
R, = E[z[njz [n]] authors assume that the equalizer is sufficiently long sathiea
%1chNC + L(I& @ (In — ilMxM)- analysis canTbe perfor_med in the cor_nk_ained chann_el/equalize
M M= spacec = H ' f. In addition, however, it is assumed in [2] that
we define® ®,., = R, as the Cholesky decomposition ofthe PPM alphabet sizé/ — oo. Under these assumptions,
the source autocorrelation, whefle,, € RN-—Ne/M+1xN.  the authors succeed in proving that the objective function
Letting H' £ H® | the MSE expression reduces to [1]  exhibits maxima only at the desired equalizer settings,ate
zero-forcing (ZF) solutions. A corresponding steepestiatsc

EX £ [Onmxma In Onrxnv.—nmratn)) (4)

2
Tmse(F,A) = HJ-'T’H’—UMEZ@; ; algorithm emerges as
where||-|| ;. denotes the Frobenius norm. Thus, the condition ~ f'[n+1] = fln] +pVsJ(f)
for perfect equalization is that the MSE is zero, or fin+1 = fln+ 1]/\/fm[n F1)f [+ 1]
HTF =&, E Uy, (7)

where the gradient in [2] is approximated BYy;J(f) ~

For the existence of an exact solution &f for this linear sgn(Z[n])#*[n]y[n]. We note that the true gradient is
system,H’ € RNs*Ne=Ne/M+1 myst be tall and full rank, VJ(f) = sgn(E[z3[n]]) E[Z*[n]y[n]], and thus the chosen
leading to the following two conditions for perfect equaliz gradient approximation is perhaps a more accurate gradient

tion: estimate of the alternate objection functiét{ f) = E[|z*[n]|]
1) Equalizer Length ConditionFor F to satisfy (7) for SINC€
: ) . L
arb|trary A, ‘H' must be a tall matrix. Hence, it is VeI (f) = Elsgn(#3[n])#2[n]y[n]]
required that S
= Elsgn(Z[n])z"[n]y[n]]

N > Nu(M —1) ®) ~  sgu(z[n])z*[n]y[n]



due to the fact that for a sufficiently small stepsizeghe natu- be seen, the objective function only exhibits maxinear the

ral averaging inherent to stochastic gradient ascentitigos desired ZF solutions; no additional false local maxima appe
effectively allows us to omit theuter expectation. Conse- By expanding the objective function in terms of its moments
quently, in the sequel, we employ a slightly more accurafeom [2], we can calculate the precise location of the maxima

gradient estimate fod (f) yielding the update equation and can show that they occur at
fln+1] = fln] + p-sgn (X, #3[m]) (X,, 2 [m]y[m]) (10) 0— —tan-? (3 + M=+ \/]\242 +6M + 5> -
where the indexn on the sums is taken over the most recent

N symbols for some window siz&'. Nevertheless, to the bestfor any integem. As M — oo, this expression indeed reduces
of our knowledge, this is the only known globally convergertp ¢ = nm/2 for any integern. Thus, for the trivial case
algorithm for blind adaptation of equalizers used with PPWwhere the combined channel/equalizer response has length 2

signals. we have a precise expression for the distance between the
true maximizers of/(c) and the ZF solutions. Indeed, even
B. Discussion of Maxima for Finité/ for small M, the maxima are quite close to the ZF solutions.

of the algorithm for finite M is unclear. Some interesting@ppear forNe =2. . .
questions might include: 2) Numerical Investigation of Maxima fa¥, > 2: While

'@e results forN, = 2 are encouraging, the results provide
no insight into the behavior of the objective function for
. If so, how far away do they move? larger vallue_f, ofN.. L_Jnfortupately, calcula}ting the maxima
. Do a’dditional false local maxima appear for finké? of the objective function rapidly be_come; intractable efam
) _ * N, = 3. However, we attempt to give evidence that suggests
Ideally, we would like to answer these questions analyical jhe results forN. = 2 do indeed apply for larger lengths.
However, without lettingM/ — oo, the expression for the \y, proceed by conducting a numerical search ag¥-—!
objective function (9) cannot readily be simplified due te thi,;iializations uniformly spaced on the uni¥, — 1 sphere,
appearance of_ many non-zero terms in the third-orde_r momeply employ the uphill simplex method [11] in attempt to
of the PPM signal. Nevertheless, we hope to provide SOmBRaracterize all maxima of the objective function. Notet tha
evidence that, indeed, the maxima only move slightly awgye again need to re-parameterize the cost function in polar
from the ZF solutions, and that additional false local maimyqordinates so that the unit norm constrain is imposed. For a

do not seem to appear. _ ~given N,, we requireN, — 1 anglest; for i = 0,..., N, — 2,

case where the combined channel/equalizer respaenkas ) i ,
length N. = 2, we can plot the objective function and . _ sind; [[;_pcost; 0<i<N.—3
calculate the exact locations of all maxima as a function of H;V:“()_Q cos 0; i=N.—2
M. To impose the constraint that the norm of the taps must

P PS MUStr each of theloNe

T . i
be uniy e e parameterize h 2 aps i polar coonaadS” *20h O MV | niabaiors o ey Eovespore.
taking ¢cp = sinf and ¢; = cosf. We then seek the angle 9 ’

0 that maximizes the objective functiofi(c) — |E[3?3[n]]] maxima from its nearest ZF solution (including negated ZF
) - __.solutions). As the number of initalizations to considervggo

Ideally, we hope that the maxima occur near the zero forcm% . . .
. . : . . exponentially with the number of channel/equalizer taps, w
solutions (as well as their negatives, as described in {#]),
. are only able to search the range< N, < 6. The results are
¢ € {[+1,0],[~1,0], [0, 1], [0, +1]}, which corresponds to o, 5 i "3 " where we see that the maxima for finite
6 = nm /2 for any integern. A plot of the objective function M are ver ?:ios,e to ZF solutions in aeneral. Aaain. for
overf for M =4 and M = 128 is shown in Fig. 2. As can _, . Y 9 - Again,
this numerical search, the only maxima appear to be near
ZF solutions; no additional local maxima were found. We
\ X I o\ ,' also note that as/ — oo, the locations of the maxima do
indeed approach the ZF solutions as reported in [2]. While
this exercise is certainly not a definitive proof, it doesgegl
1 1 ! 1 that the objective function may only exhibit “good” maxima
1 ! ! 1 | that are very near the desired ZF solutions even for finite
M=128 M. In addition, we note that all of the convergent values in
‘L, -=-M=4 | this experiment correspond to “open-eye” solutions whbee t
V decision device makes no errors in the absence of noise.

« Do the desired maxima simply move away from the Z
solutions when\/ is finite?
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05 1 L5 2 IV. SWITCHING FROM SCALAR TO BLOCK EQUALIZER

o/m
We now investigate use of the algorithm (10) for cold
Fig. 2. Objective function folNe = 2 and M € {4,128} startup of the scalar chip-rate equalizer, followed by shiiig

o



N 4) Adaptation of the block equalizer can then proceed using
B DD-LMS via
wh N Fln+1] = Fln] - uglnl(@n] — Unén)) "

where 11 is a small positive step-size which serves to
average out the noise in the gradient estimate.

V. NUMERICAL RESULTS AND CONCLUSION

A simulation was conducted using 4-PPM transmission over
1000 randomly generated Rayleigh WSSUS channels with
length N;, = 10 and 10 dB SNR. The equalizer length was
chosen to beV; = 30. The startup procedure outlined above
e was employed, where the blind algorithm in step 1 was given

et 1000 PPM symbols before switching to the decision-directed
block equalizer. We note that DD-LMS will in general con-
verge to the MMSE equalizer solution, and not the ZF solution
Nevertheless, for each of the 1000 channel realizations, we
to the block symbol-rate equalizer of section Il which caRPServed the ability of the cold startup scheme to suffigrent
subsequently be adapted with decision-directed least mé&¥fn the eye so that there would be no errors if the noise
squares (DD-LMS). It is well known that DD-LMS is notere removed. As hoped., thg equalizer supceeded_ in opening
a good choice for cold-startup from initializations whictea the eye for all 1000 realizations, suggesting that indeed th
not open-eye. With the recent discovery of a suitable allyori cold startup procedure is a good candidate for use with the
for cold-startup of a scalar equalizer [2] (and our resuitsrf PlOck equalizer structure. _ _
section |1l which suggest that it always converges near a zF'Ve have presented a cold-startup strategy which combines
solution for finite M), we expect that this algorithm can bdN€ techniques presented in [1] and [2], and seems to be
used for cold-startup of the block equalizer. a promising choice for blln_d equalization of PPM S|gne}ls.

Recall that for the blind algorithm (10), the equalizeFUture WOI‘|'( could characterize (or bound) the _exact Iona_t|o
output for a single chip of thé/-PPM signal can be written of the maxima of (9), and show that they lie in the regions
#[n] = 7 (#[n]—p,1). Equivalently, we could write an entire of convergence for DD-LMS, thus providing more analytical
equalized symbol aF_ (g[n] — 11,1) where evidence in support of this cold-startup strategy.

Fig. 3. Proximity of maxima to ZF solutions as a function /af
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