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Abstract—This paper considers the problem of tracking and pre-
dicting dynamical processes with model switching. The classical
approach to this problem has been to use an interacting multiple
model (IMM) which uses multiple Kalman filters and an auxil-
iary system to estimate the posterior probability of each model
given the observations. More recently, data-driven approaches
such as recurrent neural networks (RNNs) have been used for
tracking and prediction in a variety of settings. An advantage of
data-driven approaches like the RNN is that they can be trained
to provide good performance even when the underlying dynamic
models are unknown. This paper studies the use of temporal
convolutional networks (TCNs) in this setting since TCNs are
also data-driven but have certain structural advantages over
RNNs. Numerical simulations demonstrate that a TCN matches
or exceeds the performance of an IMM and other classical
tracking methods in two specific settings with model switching:
(i) a Gilbert-Elliott burst noise communication channel that
switches between two different modes, each modeled as a linear
system, and (ii) a maneuvering target tracking scenario where
the target switches between a linear constant velocity mode and
a nonlinear coordinated turn mode. In particular, the results
show that the TCN tends to identify a mode switch as fast or
faster than an IMM and that, in some cases, the TCN can
perform almost as well as an omniscient Kalman filter with
perfect knowledge of the current mode of the dynamical system.
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1. INTRODUCTION
In many practical dynamical systems, parameters vary, oper-
ation modes change, and failures occur, leading to changes
in the system dynamics [1]. Often, such stochastic systems
are modeled by switching between multiple dynamic models.
The optimal state estimator for such model switching prob-
lems is either unknown or prohibitively complex, however,
and often requires perfect knowledge of all the underlying
multiple models. Perhaps the most tractable, studied class of
such systems is the case where the multiple models are linear
and the switching between models is Markovian, resulting in
so-called Markov jump linear systems (MJLSs). Even within
this class of systems with model switching, however, the

optimal estimator is computationally impractical in general,
and the widely adopted approach for state estimation is to
resort to suboptimal multiple-model filtering algorithms such
as the interacting multiple model (IMM) [2] which explicitly
assumes the multiple models are known.

This paper investigates a data-driven approach to estimation
and prediction of systems with model switching which differs
from the majority of classical estimation approaches in that it
does not require explicit knowledge of the multiple models
and makes use of very recent advances in machine learning
for so-called “sequence prediction” problems. While recur-
rent neural networks (RNNs) and long short-term memory
(LSTM) have historically been the most popular choice for
sequence prediction, recent results in machine learning have
shown that a new architecture called temporal convolutional
networks (TCNs) can often outperform LSTM-based RNNs
in sequence prediction problems [3]. In addition to their per-
formance advantage in a wide range of sequence prediction
problems, TCNs have a number of implementation advan-
tages over RNNs in that they admit a more parallelizable
implementation and have reduced memory requirement for
training; in addition, TCNs have several structural advantages
such as an adjustable receptive field size, and avoidance of the
problem of exploding/vanishing gradients known to plague
RNNs.

The performance of the proposed TCN approach to state
prediction for dynamical systems with model switching is
demonstrated in two practical applications:

1. Communication over Gilbert-Elliott Channels: In prac-
tical communication systems, burst errors can arise on the
channel thus making communication challenging. A simple
but effective model for simulating channel-induced burst
errors is the Gilbert-Elliott two state Markov model [4, 5],
which uses a Markov chain with two states representing a
good channel mode and a bad channel mode. In this model
the channel transitions between these two modes, depending
on the current state of the model. We consider a time-varying
narrowband channel that switches periodically between two
distinct autoregressive channel models.

2. Maneuvering Target Tracking: Maneuvering target track-
ing estimates or predicts aircraft motion, often by a radar or
other detection and ranging sensor to control its flight path, or
direct its movement in accordance with other operations. Air-
craft motion is typically modeled as switching between two
or more linear systems, with a different linear system repre-
senting constant velocity, constant acceleration, coordinated
turns, or other possible maneuvers. For a comprehensive
survey of maneuvering target models, we point the reader to
[6]. We consider a scenario where a target switches between
a constant velocity mode and a coordinated turn mode.
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Numerical results are presented to demonstrate the perfor-
mance of the proposed TCN-based approach in both of these
examples of dynamical systems with model switching. The
optimal estimator for linear dynamics in the absence of
switching, e.g., a single autoregressive channel or a target
with constant velocity, is the Kalman filter. Thus, as an initial
validation step, simulations are used to demonstrate the TCN-
based approach performs as well as the optimal Kalman filter
for both applications in the absence of switching. The switch-
ing scenario is then considered, and simulations demonstrate
the effectiveness of the TCN-based approach compared with
an omniscient Kalman filter which has perfect knowledge
of the current operation mode and the underlying linear
system model and noise covariances of each mode. The
performance of the proposed TCN-based approach is also
compared with other popular suboptimal estimators such as
the Least Squares (LS) and IMM filters. The results from
both applications demonstrate that the TCN-based approach
achieves performance close to optimal without knowledge
of the system dynamics or noise statistics. Moreover, the
proposed approach is sufficiently general in that it can be
applied to a wide variety of dynamical systems with model
switching.

2. SYSTEM MODEL
We consider a framework for dynamical systems that undergo
switching in time among several modes or sub-systems. Such
dynamical systems have a long history in control theory, and
are sometimes referred to as “jump systems” [7]. Under a
fairly general discrete-time framework, the system state and
measurement evolve according to

x[k + 1] = fθk(k, x[k], v[k])

y[k] = hθk(k, x[k], w[k])

where x[k] is the state vector, y[k] is the measurement vec-
tor, v[k] is the random process noise, w[k] is the random
measurement noise, fθk(·) is a family of N vector functions
describing the state dynamics during mode θk, hθk(·) is a
family of N vector functions describing the measurement
dynamics, and θk ∈ {0, 1, . . . , N − 1} denotes the stochastic
system mode in effect during the sample period ending at
discrete time k. We assume throughout that the current
system mode θk in effect is not known, though the statistics
of the random process may be known.

Under certain assumptions about the model dynamics and the
stochastic switching, several important special cases of this
system model emerge. When the switching process θk can be
described by a Markov chain with time-invariant transition
matrix P , so-called Markov Jump Systems arise [8]. If, in
addition, the system is linear, the system is called a Markov
Jump Linear System (MJLS) [1] and it admits the state space
realization

x[k + 1] = Fθk [k]x[k] + v[k] (1)
y[k] = Hθk [k]x[k] + w[k] (2)

where the non-linear functions fθk(·) and hθk(·) are replaced
by the matrices Fθk [k] and Hθk [k]. When the process and
measurement noises can be modeled as Gaussian random
processes, we assume they are distributed as v[k] ∼ N (0, Q)
andw[k] ∼ N (0, R), respectively, withQ andR as the corre-
sponding covariance matrices. Again, while we assume that
the mode θk in effect at time k is not known, at times we will

assume knowledge of the transition matrix P that completely
characterizes the statistics of the underlying Markov chain.

Having described the general model and notation that we will
use throughout this paper, we now discuss specific system
models for two applications within this class of switching
systems: (i) communication through a time-varying Gilbert-
Elliott channel which models switching between two differ-
ent modes, and (ii) tracking maneuvering targets that switch
between a near constant velocity mode and a coordinated turn
mode.

Gilbert-Elliott Channel

A Gilbert-Elliott channel models communication through
narrowband channels that tend to induce burst errors in the
received data. Generally, these bursts of contiguous erro-
neous symbols arise when the channel makes a jump from
a “good” mode to a “bad” mode. Thus, such a channel model
has N = 2 modes where θk = 0 represents the situation
where the system is in the “good” channel mode, and θk = 1
represents the “bad” channel mode that induces burst errors.

In this paper, the unknown baseband channel gain is as-
sumed to be complex, representing in-phase and quadrature
components. In addition, we assume that the channel is
time-varying according to an autoregressive (AR) process,
and the measurement y[k] represents noisy observations of
the complex channel gain. While the channel gain itself is
time-varying, the family of matrices Fθk governing the AR
system dynamics for each mode is assumed to be static in
this application. Specifically, the scalar complex channel gain
c[k] at time k is modeled by an mth-order AR process

c[k] =

m∑
j=1

aj,θkc[k − j] + v′[k] (3)

where aj,θk denotes the AR parameters of mode θk for
j ∈ {1, . . . ,m} and v′[k] is an i.i.d. zero-mean complex
Gaussian scalar process with variance σ2

v . Because mode
0 represents the “good” channel mode, the AR coefficients
aj,0 corresponding to this mode are expected to lead to more
reliable communication than the set of AR coefficients aj,1
corresponding to the “bad” mode 1. For example, the mode 0
coefficients might be easier to estimate or might lead to higher
average received signal-to-noise ratio.

Putting the AR model in the dynamical systems framework
above, this leads to a MJLS governed by these equations:

x[k + 1] =


a1,θk a2,θk · · · am,θk

0

Im−1

...
0

x[k] + v[k]

y[k] = [ 1 0 · · · 0 ]x[k] + w[k]

where the state vector is defined in terms of the scalar AR
process above as x[k] = [c[k − 1] · · · c[k − m]]> ∈ Cm
and Im−1 is the identity matrix of size m − 1. The process
noise is distributed as v[k] ∼ CN (0, Q), though in this case
Q is all zeros except for the top left corner which equals
[Q]0,0 = σ2

v , so that process noise is only added to the
topmost state, making the model match the scalar AR process
model (3). The observation y[k] is a complex scalar, and
the measurement noise is distributed as w[k] ∼ CN (0, σ2

w).
Finally, the statistics of the Markov mode switching are
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uniquely defined by the initial state probabilities and the state
transition matrix P , as depicted in Fig. 1, where the elements
of the matrix P are given by pij .

Mode 1Mode 0
p00

p01

p10

p11

Figure 1. Two-state Markov chain modeling switching in
the Gilbert-Elliott channel

Maneuvering Target Tracking

In maneuvering target tracking, the primary objective is using
noisy measurements of a moving object (acquired, for exam-
ple, via radar) to estimate or predict state trajectories. The
body of literature concerned with dynamical models of target
tracking is rich, and there are numerous models for describing
the dynamics of target motion (see [6] for a comprehensive
survey). Target motions generally fall into two classes: non-
maneuvering and maneuvering. A non-maneuvering motion
is uniform motion at a nearly constant velocity, whereas a
maneuvering motion is most any other motion. Here, we
consider a popular discrete-time maneuvering target tracking
model [2] that switches between N = 2 such modes. Specif-
ically, we assume that the target is either in a near constant
velocity (CV) mode or in a coordinated turn (CT) mode.
Moreover, we again assume that the switching dynamics are
described by a two-state Markov chain so that the mode
switching model shown in Fig. 1 applies to this application,
as well. While the model for CV mode turns out to be linear,
the CT mode obeys a nonlinear model. We now describe
the dynamical model for each of the two modes for state
dimension compatibility when switching between modes.

Constant Velocity Model—The model for CV mode has four
states x[k] = [ξ[k] ξ̇[k] η[k] η̇[k]]> with ξ and η denoting
Cartesian coordinates in the horizontal plane, and ξ̇ and η̇
denoting the velocity. The model for operation in CT mode is
linear and is described by

x[k] =

[
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

]
x[k − 1] +

 1
2T

2 0
T 0
0 1

2T
2

0 Ω[k]

 v[k] (4)

with v[k] ∼ N (0, Q) as in [2]. The process noise here serves
to model turbulence or other non-idealities. Because the CT
model below has five states, it is common to append a fifth
state to this model that is always zero.

Coordinated Turn Model—The coordinated turn (CT) model
has nearly constant speed and turns at a constant rate. It
adds a fifth state to the CV model and is defined as x[k] =

[ξ[k] ξ̇[k] η[k] η̇[k] Ω[k]]> where Ω[k] denotes the turn rate.

The CT model is nonlinear and can be written as

x[k] =


1

sin(Ω[k]T )
Ω[k]

0 − 1−cos(Ω[k]T )
Ω[k]

0

0 cos(Ω[k]T ) 0 − sin(Ω[k]T ) 0

0
1−cos(Ω[k]T )

Ω[k]
1

sin(Ω[k]T )
Ω[k]

0

0 sin(Ω[k]T ) 0 cos(Ω[k]T ) 0
0 0 0 0 1

x[k − 1]

+

 1
2T

2 0 0
T 0 0
0 1

2T
2 0

0 T 0
0 0 T

 v[k].

(5)

Because the matrix multiplying x[k−1] in the above equation
is a nonlinear function of one of the state variables, Ω[k], it is
clear that this is a nonlinear model. In models where the turn
rate Ω[k] is known and therefore not a state variable, this CT
model reduces to a linear system.

The model for the measurement y[k] in both CT mode as
well as the CV mode (with an appended fifth zero state, as
mentioned above) is given by

y[k] =

[
1 0 0 0 0
0 0 1 0 0

]
x[k] + w[k]

where w[k] ∼ N (0, R). That is, the measurement consists
of noisy observations of ξ[k] and η[k], i.e., the Cartesian
coordinates of the target.

3. STATE ESTIMATION AND PREDICTION
METHODS

We now briefly review several classical methods for esti-
mating and predicting states in dynamical systems. While
our primary concern in this paper is prediction, estimation
and prediction methods are very tightly intertwined. Under
certain assumptions, several of these methods are optimal
estimators in non-switching dynamical systems; however, all
of the these estimators are suboptimal estimators when used
in dynamical systems with model switching.

When the system dynamics of each mode are known, the
optimal approach to estimation and prediction in models with
switching generally involves building independent parallel
estimators for all possible mode histories (i.e., all possible
sequences θk). Because this is exponentially complex even
for the simplest classes of dynamical models with switching
(e.g., MJLSs), optimal estimators are impractical in sys-
tems with model switching. For this reason, suboptimal
approaches are used exclusively in practice.

Kalman Filter

For a linear state-space model with Gaussian noise and known
process and measurement noise covariances, the optimal
solution is provided by the KF with the standard recursive
prediction and update equations that calculate estimates and
predictions [9, 10]. Since we only present the salient ideas
here, the reader is directed to [11–13] for further details. For
each iteration,

1. The prediction step estimates the current state estimate
with the previous state estimate, x̂[k|k], taken forward one
step via the linear transformation x̂[k + 1|k] = Fk+1x̂[k|k].
2. The update step performs a linear combination of x̂[k|k]
and actual measurements y[k].
3. Covariances of both state estimates are calculated during
both the prediction and update stages.
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A major caveat for the KF is that in order to obtain an optimal
state estimate, the KF requires exact knowledge of the system
model as well as the process noise and measurement noise
parameters. The performance of the KF degrades if there
are mismatches between the true dynamical system and the
assumed model; this topic has received significant attention in
the literature (e.g. [14]) and numerous approaches have been
proposed to mitigate this degradation.

Least Squares Prediction

While least squares is a well-known technique, we briefly
review it here because it as an example of a “data-driven”
estimator that does not require knowledge of the underlying
dynamical system model, though it does require training
data containing a collection of known state variables and the
corresponding observations. In the steady state, a Kalman
filter predictor can be written in the form

x̂[k + 1|k] = a0y[k] + a1y[k − 1] + a2y[k − 2] + . . .

where, if the dynamics and noise parameters are all known,
the {ai} coefficients can all be computed as functions of the
steady state prediction and estimation covariances. These are
all, consequently, functions of the steady state Kalman gain.
This results in a stable IIR filter that resembles a Kalman
filter, and it can be approximated by truncating the number
of terms so that

x̂[k + 1|k] ≈ a0y[k] + a1y[k − 1] + ...+ aLy[k − L]

where L+1 is the number of terms in the truncated sequence.
Thus the problem is to find {a0, ...aL} to minimize the
mean squared prediction error without requiring knowledge
of the dynamics or noise parameters. Given enough y[k]
observations, this can be accomplished using least squares on
the linear system of equations[

x̂[k]

...
x̂[k−M ]

]
︸ ︷︷ ︸

,X̂

=

[
y[k−1] ... y[k−L−1]

...
. . .

...
y[k−M−1] ... y[k−L−M−1]

]
︸ ︷︷ ︸

,Y

[ a0

...
aL

]
︸ ︷︷ ︸
,a

which for M ≥ L can be solved as a standard least squares
problem, i.e.,

aLS = (Y >Y )−1Y >X̂.

Interacting Multiple Model for Maneuvering Targets

Unlike the prior estimators which do not give any special
consideration to the switching nature of the model, the IMM
filter [15] is a suboptimal estimator designed specifically for
dynamical systems with model switching. The IMM falls
into the class of estimators that use multiple filter models,
typically with one matched to each of the N modes of the
system. Other approaches in this class include, for example,
the Generalized Pseudo-Bayesian (GPB) methods [16]. In
such approaches, minimizing computation becomes very im-
portant due to the exponentially increasing number of state
hypotheses. The IMM effectively combines hypotheses from
multiple filter models in a computationally efficient manner,
and is therefore widely used in practice for state estimation
in dynamical systems with model switching. The model
inaccuracy is addressed by facilitating an interaction between
them for different modes at the beginning of each filter cycle.
These are weighed accordingly by the conditional probabil-
ities of switching between model modes. We summarize

the algorithm briefly here and direct the reader to [2] for a
detailed treatment.

The IMM estimates the blended states and covariances itera-
tively at each step by combining the initial conditions, states,
and their associated covariances according to the mode tran-
sition probabilities. Denote the state estimate at time k− 1 of
the filter matched to the ith mode as x(i)[k − 1|k − 1] and its
corresponding covariance Σ(i)[k− 1|k− 1] for i ∈ 1, . . . , N ,
then each step of the IMM filter performs the following:

1. Calculate mixing probabilities {µi|j [k − 1|k − 1]}Ni,j=1,
mixed estimates {x̂(0i)[k − 1|k − 1]}Ni=1 and covariances
{Σ(0i)[k − 1|k − 1]}Ni=1.
2. Using each of the N mode-matched models, calculate
predicted estimates x̂(i)[k|k−1] and covariances from mixed
estimates in the previous step for ith model, i ∈ 1, . . . , N .
3. Calculate updated estimates x̂(i)[k|k] and covariances
from the predicted estimates for ith model, i ∈ 1, . . . , N and
calculate the updated mode probabilities µi[k].
4. Calculate the output state estimate and covariance esti-
mates. The overall output state estimate is computed as
x̂[k|k] =

∑N
i=1 x̂

(i)[k|k]µi[k].

While the traditional IMM as outlined above outputs state
estimates, it can also be used to output state predictions. By
using the assumption that the predicted mode probabilities at
time k+1 given knowledge up through time k are equal to the
estimated mode probabilities at time k, i.e., that µi[k+1|k] ≈
µi[k] as in [17], the overall predicted state can be computed
via

x̂[k + 1|k] =

N∑
i=1

x̂(i)[k + 1|k]µi[k + 1|k]

≈
N∑
i=1

x̂(i)[k + 1|k]µi[k].

4. TEMPORAL CONVOLUTIONAL NETWORK
While convolutional neural networks have shown great
promise as an effective machine learning architecture, par-
ticularly in image recognition applications [18], CNNs have
more recently been employed as a fundamental piece of
temporal convolutional networks for time-series modeling
and sequence prediction problems. TCNs have demonstrated
state-of-the-art performance over a wide range of prediction
applications, including weather prediction [19], traffic predic-
tion [20], audio [21], and action segmentation [22] to name a
few. Moreover, as mentioned in Section 1, TCNs offer several
implementation advantages over LSTM-based RNNs, which
have traditionally been the most widely used architecture for
sequence prediction problems [3].

TCNs use dilated convolutions to increase the receptive field
of the network. They are more memory efficient than re-
current networks due to the shared convolution architecture
which allows long sequences to be processes in parallel.
In RNNs, the input sequences are processed sequentially,
which results in higher computation time. However, TCNs
are trained with the standard backpropagation algorithm,
hence avoiding the gradient problems of the backpropagation-
through-time algorithm used in RNNs.
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TCNs are generally used in one of two configurations: (i) for
sequence estimation where the output sequence is the same
length as the input sequence, just as with RNNs, or (ii) for au-
toregressive prediction of samples at some time in the future,
which is typically accomplished by adding a fully connected
layer to the output of the sequence prediction. In this paper,
we consider the latter configuration and the corresponding
architecture is shown in Fig. 2. Essentially, a TCN employs

Figure 2. Schematic of a Temporal Convolutional Network
with a series of residual blocks with increasing dilation

followed by a fully connected layer.

a series of connected residual blocks consisting of 1D fully-
convolutional networks (FCNs) [23] where the convolutions
are chosen to be causal, primarily through appropriate choice
of zero-padding, and dilation [22]. In TCNs, dilation takes
the place of “pooling” which is commonly used in more
traditional CNN architectures, and it allows the TCN to have
a large receptive field.

A TCN can accept a multi-dimensional input sequence (i.e.
a matrix). In the two applications considered in this paper
– Gilbert-Elliott channel prediction and maneuvering target
tracking – the input vectors are two-dimensional as shown in
Fig. 2. The specific TCN implementation that we consider in
this paper is the one described in [3], which is the basis for the
Python library [24] we used. Finally, because analysis of the
TCN performance as an estimator or predictor is intractable,
we present simulated performance in the next section.

5. RESULTS
We now present the simulated performance of the TCN when
used for prediction in two example dynamical systems with
model switching. The performance of the TCN is compared
to the IMM, LS, and a Genie Kalman Filter (GKF) which
is a time-varying KF with perfect knowledge of the current
mode θk. When the current mode θk is known and the
mode dynamics are linear, the system reduces to a standard
linear time-varying dynamical model for which the KF is
optimal. Hence, for linear mode dynamics, the MSE of the
GKF establishes a lower bound by which other algorithms
can be compared.

Gilbert-Elliott Channel Prediction Example

We selected a 2nd-order model with AR coefficients chosen
as

Mode 0 (good) : a1,0 = 0.3, a2,0 = 0.1

Mode 1 (bad) : a1,1 = 1.949, a2,1 = −0.95

and the process and measurement noise were both chosen to
be σ2

v = σ2
w = 0.1. Note here that the “bad” channel has

a characteristic root very near the unit circle. The transition

probabilities of the Markov chain that define the mode were
set to p00 = p11 = 0.9995 and p01 = p10 = 0.0005, forming
a homogeneous Markov chain. We selected these parameters
so that the probability of switching would be low, such that
the model would stay in either mode for an extended period of
time in order to model a burst noise channel [4]. The Kalman
filters matching mode 0 and mode 1 are denoted as “KF0” and
“KF1”, respectively. For the complete implementation of the
Gilbert-Elliott channel model used here, we refer the reader
to the code repository [25].

The TCN used for this problem was designed with a total of
18,102 trainable parameters comprised of two stacks of three
layers consisting of 20 convolutional filters, and the kernel
size was chosen to be 4. We trained a TCN with 4 × 106

samples to predict a pair of numbers representing the real and
imaginary portion of the complex state of the channel. For
each prediction, the TCN was provided an input containing
the 10 most recent complex noisy channel observations. The
complex channel observations were split into real and imag-
inary parts [26] such that, for each prediction, the TCN used
an input from R10×2.

Table 1. Gilbert-Elliott channel prediction MSE.

With Only Only
mode mode 0 mode 1

switching (“good”) (“bad”)
Genie KF 0.216 0.106 0.321

KF0 291 0.106 560
KF1 0.427 0.352 0.321

Least Squares 0.409 0.294 0.344
IMM 0.307 0.106 0.321
TCN 0.309 0.106 0.322

Results for the Gilbert-Elliott scenario described in Table 1
were obtained from Monte Carlo simulations with 4 × 106

output pairs. The results are further broken down into perfor-
mance on a model with mode switching and two models with-
out mode switching (“only mode 0” and “only mode 1”). As
expected, KF0 is optimal for a system with “only mode 0” dy-
namics and KF1 is optimal for a system with “only mode 1”
dynamics, while both perform badly in a system with mode
switching. The GKF is optimal in all cases since it has perfect
knowledge of the mode. The TCN and IMM achieve nearly
identical performance, and they are close to optimal in both
cases without mode switching and outperforms all algorithms
with switching, achieving an MSE close to that of the GKF.
We again recall that the IMM requires exact knowledge of
the AR channel coefficients, knowledge that is not required
by the TCN. As a data-driven approach, the TCN requires the
availability of significant training data.

It is notable that KF0 has poor performance when making
predictions of states generated under mode 1. The large
errors experienced by KF0 under mode 1 are due to the
extreme coefficient mismatch between what KF0 expects and
the actual model coefficients in mode 1. Intuitively, KF0
assumes that the current and previous states will have a small
effect on the next prediction, which is optimal for mode 0 but
far from optimal under mode 1.

As for the LS predictor, with mode switching, LS trains on
a combination of mode 0 and mode 1 data. As can be seen
from the performance of KF1 and KF0 under the respective
mismatch scenarios, a KF with coefficients that align with
the higher error rate model will perform better when model
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mismatch occurs, compared to a KF with coefficients more
effective under a lower error rate model. Hence, LS finds a
model such that the equivalent KF would perform best across
all modes. This will of course result in performance closer
aligned to KF1 than KF0, since the performance of KF0 under
mode 1 is so poor.

Figures 3 and 4 demonstrate the algorithms’ performance
from initialization to steady state averaged over 5,000 Monte
Carlo simulations. Since the TCN and IMM performance is
nearly identical, IMM curves have been omitted for visual
clarity. Figure 3 demonstrates the mean squared prediction
error performance for predictions of the first state of the AR
process by the TCN, LS, and KF0 for the “only mode 0” case.
These results show that the TCN closely tracks the (optimal)
performance of KF0. Figure 4 similarly shows the achieved
performance for the “only mode 1” case. In this case,
the TCN mean squared prediction error performance lags
approximately one sample behind the (optimal) performance
of KF1. In both of these examples, the TCN achieves the
steady state performance shown by the black dashed “Ricatti
line” within a handful of samples.

0 1 2 3 4 5 6 7 8 9 10

discrete time index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
e
a
n
 S

q
u
a
re

d
 P

re
d
ic

ti
o
n
 E

rr
o
r

LS

TCN

KF0

Riccati Line

Figure 3. Gilbert-Elliott mode 0 (“good channel”)
prediction error, averaged over 5,000 realizations.
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Figure 4. Gilbert-Elliott mode 1 (“bad channel”) prediction
error, averaged over 5,000 realizations.

Maneuvering Targets Tracking Example

Mode 0 was chosen to be the nearly constant velocity model
described by (4), while mode 1 was chosen to be the (non-
linear) coordinated turn model described by (5). The CV-
to-CT and CT-to-CV transition probabilities were selected as
p01 = p10 = 0.01, and the remaining system parameters
were selected to be T = 1 sec, Q = I2, R = 576 · I2
where I2 is a 2 × 2 identity matrix. The initial speed of the
target was normally distributed with a mean of 120 m/s and
a standard deviation of 30 m/s. The magnitude of the initial
turn rate at the start of each turn was normally distributed
with a mean of 4 rad/sec and a standard deviation of 1
rad/sec, and with left and right turns being equally likely;
thus, Ω[k] at the start of each turn has a folded Gaussian
distribution. We perform 4 × 104 Monte-Carlo simulations
with 103 samples to ensure a consistent performance across
multiple mode transitions. We report the average prediction
RMSE in Table 2, where the RMSE is computed only over the
two Cartesian coordinate states of the target, i.e., RMSE =√
E[(ξ − ξ̂)2 + (η − η̂)2]. The performance of the algorithm

is evaluated similar to the Gilbert-Elliott scenario. Any
samples occurring 25 samples or fewer after a mode transition
are defined as as being in a “transition regime”. The CV
and CT mode performance in the table indicates an average
RMSE only over those time slots which are not in a transition
regime, i.e., where no transition occurred within the previous
25 time slots. An example transition is shown in Figure 5.
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Figure 5. Example trajectory showing transition from CV
to CT. Target is moving in direction of arrow, and we define

the “transition” as having a duration of 25 samples.

To obtain a lower bound on the performance as in the Gilbert-
Elliott scenario, we again use a Genie Kalman Filter which
has knowledge of the current mode. Here, however, the GKF
is additionally provided knowledge of the current turn rate
Ω[k] (i.e., the fifth element in the state vector). With this
knowledge, the CT model in (5) becomes a time-varying
linear model and thus the GKF is the optimal estimator. We
note that providing this additional information to the GKF
may result in its prediction MSE being a rather loose lower
bound for CT mode operation.

The network is trained on 4 × 106 samples with the same
architecture consisting of 18,102 trainable parameters de-
scribed in the prior Gilbert-Elliott section. Additional details
concerning other TCN hyperparameters can be found in the
code repository [25]. For each prediction, the TCN was
provided the two Cartesian coordinates of the 20 most recent
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noisy observations of the target, and thus the input was
from R20×2. Just prior to the TCN input, the coordinate
system of every input was translated so that each length-20
input sequence terminated at the origin; at the TCN output,
this translation was reversed to put the outputs back on the
original coordinate system. The reason for this translation
is that data pre-processing has been shown to improve the
performance of machine learning systems, particularly when
the pre-processing serves to limit the inputs and outputs to a
narrower or more balanced range of values.

Table 2. Maneuvering target prediction RMSE (in meters)

With Only Only
mode mode 0 mode 1

switching (CV) (CT)
Genie KF 19.5 19.4 19.6

IMM 28.0 20.0 24.8
TCN 25.4 20.6 25.9

The results in Table 2 show that the prediction RMSE for
the GKF, IMM, and TCN are all quite close during CV
mode, suggesting that both schemes achieve near-optimal
RMSE performance. During CT mode, the GKF lower
bound is likely rather loose, as knowledge of the true turn
rate provides it a considerable advantage during this mode;
however, the prediction RMSEs for IMM and TCN are again
rather comparable during this mode, with IMM prediction
RMSE being just slightly lower than the TCN. As for the case
with switching, overall the TCN has lower prediction RMSE
than the IMM. This is largely due to the superior RMSE
performance of the TCN during CV-to-CT transitions, as we
will now show.

Figures 6 and 7 depict the prediction RMSE values before and
during the transitions from time steps 0 through 25. While the
TCN exhibits a slightly higher RMSE than the IMM during
the transition from CT mode to CV mode in Fig. 6, the
TCN has significantly lower RMSE when transitioning from
CV mode to CT mode as shown in Fig. 7. For the chosen
transition probabilities and with the definition of a mode
“transition” as lasting 25 samples, the target spent 38.5% of
its time in the CV mode, 38.5% in CT mode, and 11.5% in
each of the two types of mode transitions.
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Figure 6. Root Mean-Square Prediction Error During
CT-to-CV transitions. RMSE values in table computed over

discrete time values 0 ≤ k ≤ 25.
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Figure 7. Root Mean-Square Prediction Error During
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In summary, while the TCN is slightly inferior to the IMM
in terms of prediction RMSE during long stretches of CV
and/or CT modes as well as during transitions from CT-to-CV
mode, the ability of the TCN-based approach to more quickly
recognize that the target has entered CT mode leads, overall,
to a performance advantage over the IMM.

6. CONCLUSION
In this paper, we applied TCNs to predict states of dynamical
systems with model switching. We considered Gilbert-Elliott
channels and maneuvering target tracking as examples and
demonstrated that the TCN achieves mean-squared prediction
error at least as good as classical algorithms while not re-
quiring any knowledge of the system model. Possible future
directions include investigating the use of TCNs in other
dynamical systems with model switching, such as automotive
traffic modeling, power plant control, wireless energy trans-
fer, and scheduling information transfer in communications
channels. Because research on TCNs more broadly is ad-
vancing at a fast pace, further research could also include
recent enhancements to the TCN architecture and training
approach, such as rapid training with small amounts of data.
Additionally it may be beneficial to compare performance of
the TCN to other deep learning architectures to give a more
complete performance evaluation. All source code from this
paper is available at [25].
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