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ABSTRACT

We consider blind channel estimation for orthogonal modu-
lation and its variants which include pulse position modu-
lation (PPM) and frequency shift keying (FSK). While equal-
ization of this modulation format has been given some atten-
tion by the research community, little attention has been paid
to techniques for (blind) channel estimation in systems em-
ploying orthogonal modulation. We extend classical subspace-
based blind techniques in a way that is suitable for use with or-
thogonal modulation. Unlike classical subspace-based blind
channel estimators, however, our scheme does not require
oversampling and/or multiple sensors. After introducing the
system model, we present the proposed method of channel
estimation, and include conditions under which the scheme is
valid. We conclude with several simulations.

1. INTRODUCTION

Orthogonal modulation is a modulation scheme that has been
studied for many applications, and its many variants include
frequency shift keying (FSK) and pulse position modulation
(PPM). Traditional uses of orthogonal modulation have been
in situations with little or no ISI, and thus there has been little
motivation to explore channel identification of such signals
to the extent that channel identification has been explored for
linearly modulated signals. Orthogonal modulation is a power
efficient scheme, but is bandwidth inefficient, and thus has at-
tracted attention for use in ultra wideband (UWB) communi-
cation systems where ISI is an issue.

Several schemes have been proposed for equalization of
orthogonally modulated signals, for example [ 1] [2] [3]. How-
ever, all of these schemes rely on previous knowledge of the
channel taps, or they assume that training data is available.
In situations where training data is unavailable or insufficient,
blind channel identification schemes are required. In this pa-
per, we propose a technique for subspace-based blind channel
identification for use with orthogonal modulations. While we
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believe this to be the first work addressing blind channel iden-
tification for the general class of orthogonal modulations, we
point out several related works. First, we note that our tech-
nique is an extension of that proposed in [4]. In the context of
orthogonal modulation, however, our technique has the ben-
efit of not requiring oversampling or multiple sensors as was
necessary in [4]. Also related is [5], wherein the authors pro-
pose subspace-based detection for multiuser ultra-wideband
(UWB) environments. While PPM is considered in [5], the
conditions for successful channel identification are not pro-
vided.

We begin by describing orthogonal modulation and the
corresponding system model. Then we present a channel iden-
tification method, which, it turns out, is suitable for use with a
general class ofmodulation formats that exhibit particular cy-
clostationary source statistics. We include the identifiability
conditions for the method, and specialize the method for use
with orthogonal modulations. Next, we present simulations
that demonstrate algorithm performance, and we conclude the
paper. In this paper, we use T to denote matrix transpose, H to
denote Hermitian transpose, X to denote matrix direct (Kro-
necker) product, Im to denote the m x m identity matrix,
1-mxn to denote the m x n matrix of all ones, °mxn to de-
note the m x n matrix of all zeros, and ei to denote the unit
canonical vector with a 1 in the ith element.

2. SYSTEM MODEL

M-ary orthogonal modulation is accomplished by transmit-
ting one ofM orthogonal waveforms serially through the chan-
nel. Each waveform is assumed to consist of M chips, so
orthogonal modulation can be thought of as a block coding
scheme where information is conveyed by transmitting one of
M codes. Let S C CMXM be the matrix whose columns are
the M waveforms. We assume the waveforms are mutually
orthogonal and have unit energy, so that SHS = IM. Thus,
for example, the choice S = IM corresponds to PPM, while
choosing S to be the DFT matrix where [S]i,j = eij /
corresponds to FSK. In this paper, we consider a coherent
sampled model where each chip is sampled once.
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Fig. 1. System Model

The system model is shown in Fig. 1. To represent orthog-
onal modulation, we assume that log2 M bits are mapped to
one ofM selection vectors a[n] which are simply unit vec-

tors that serve to select the desired waveform, so that a[n] C
{eOe, j, ...., eM1}. Next, the matrix S maps the selection
vectors to one of the orthogonal waveforms, so that the sym-

bol waveform transmitted at time n is given by

x[n] = Sa[n] (1)

where x [n] C CM. The M-ary orthogonal symbols are as-

sumed to be i.i.d. and equiprobable, and we note that the re-

sulting chip-rate process is cyclostationary with period M.
The chips are transmitted serially through a causal linear time-
invariant channel having finite impulse response given by h =
[h[O], h[1], .., h[Nh 1]]T The channel also contributes
zero-mean additive white Gaussian noise (AWGN) of vari-
ance o7.

Since the chips are transmitted serially through the chan-
nel, we use the stacked vector

x[n] 1

;i[n] x
x[n -li (2)

so that N samples of the the received signal can be written

y[n] = WN-' [n] + w- [n] (3)

where y[n] C RN, ;i[n] C RN±Nh 1, the Tcplitz channel
MatriX uN e RNxN+Nh-1 is defined as [NN]i,j = h[j i],
and wiv[n] C IRN is the AWGN. We note that 1N is a wide
matrix that is full row rank, but is certainly not full column
rank. Just as ;i[n] contains the stacked transmitted symbol
vectors, we can encapsulate the corresponding selection vec-
tors into &[n] [aT[n], aT[n -1], ...]T, which enables us
to write ;i[n] =(I 08 S)a&[n], and

y [n] = HN (I X9 S)a&[n] + wC [n] . (4)

A typical receiver would then perform some method of
ISI compensation before making a decision on which symbol
was transmitted. As the receiver may have no a priori infor-
mation about the channel impulse response coefficients, we
now consider a blind scheme for estimation of these parame-
ters.

3. SUBSPACE-BASED IDENTIFICATION

3.1. Preliminaries

Having established the system model for transmission of or-
thogonal modulation, we now shift our attention to a blind
method for estimating the Nh channel coefficients h from the
received signal y [n]. Our method is an extension of [4], which
relies on subspace concepts and second-order statistics of the
received signal. In classical methods for subspace-based blind
channel identification [4][6], two assumptions are made:

Al. Oversampling or multiple sensors are employed (and
necessary).

A2. The autocovariance matrix of the transmitted source
data (i.e. E [;i [n] ;iH [n]]) is full-rank.

However, neither of these assumptions are made here; in fact,
we show that violation ofA2 is precisely what eliminates the
need for oversampling in Al. Hence, our method is effec-
tively an extension of [4] to operate on source data with rank-
deficient autocovariance matrices (which is the case for or-
thogonal modulation as we will show) without the need for
oversampling.

Before specializing the method to M-ary orthogonal mod-
ulation, however, we first consider a more general situation.
For now, we only assume that ; [n] is a periodM cyclostation-
ary source sequence arising from i.i.d. symbols x [n] C RM
constructed as in (2). We denote the mean x AE [x [n]] and
autocovariance matrix of a single symbol -yx AE[(x[n]-
fx))(x [n] flx)H1, and we assume r A rank(-yx) < M so
that A2 is violated. Since -yx is an autocovariance matrix, it
is Hermitian symmetric and semi-positive definite, and there-
fore admits a factorization

FXL'H =7x (5)

where , CMX"r is full column rank. Using these defini-
tions together with (2) gives the first- and second-order statis-
tics of the transmitted vector ; [n] as

AH -

~tx A E[(t[n] flx)(X[fI1,xx)H

=IN. (8 ax

(6)

(7)

where Nx A N±Nh , and we have used the fact that sym-
bols are i.i.d. in arriving at (7). For simplicity, we assume the
observation window length N is chosen so that N + Nh -1
is a multiple of M.

Similar to [4][6], the blind identification method we pro-
pose is based on the autocovariance matrix of the received
signal y [n]. While the receiver does not have exact knowl-
edge of the autocovariance matrix, a sample estimate can be
used. For now, however, we assume the receiver has exact



knowledge of the autocovariance matrix. From (3) and (5)-
(6), we have

fl A E[y[n]]
= N (IN,,XX1 (8 AX)

A E[(y[n] -l )(y[n] -pf
= iNY-XI + w7IN

=Heff,NHeff N + (7WIN (8)

where the source data and noise are assumed to be uncorre-
lated, and the effective channel matrix is

where (11) follows from the fact that filtering the vector g
with the Tceplitz filtering matrix 7HN is equivalent to filtering
the vector h with the Tceplitz filtering matrix g. As (11)
holds for all k, we conjugate both sides and stack the 's to
obtain

F 0 1

(I X FT) h

LAN-rNx-l--1
=Q

0. (12)

Heff,=NA lN (INx LX)) CNx(N+Nh-1)r/M (9)

As in [4][6], we require H,ff,N to be tall and full column
rank. From (9), we see that if r = M (i.e. if the data auto-
covariance matrix is full rank), Heff,N cannot be made tall.
Thus, it is precisely the requirement r < M that permits a tall
channel matrix for sufficient window length N, thereby en-
abling the use of subspace-based blind identification schemes.

3.2. Subspace decomposition

Let UAUH = 'Y, be the eigendecomposition of the autoco-
variance matrix of the received signal (8), with eigenvalues
Ao> Al> ... > ArN,-1 >ArN> = *... = AN-1 = c7w-
From (8) the signal part of the covariance matrix has rank
rNx, due to the assumption that Heff,N is full column rank.
We can partition U into signal and noise subspaces as U
[F G] where

F = [fO, ... frN -Ii
G = [9o t ha9N-rNt-1

so that

o

'Y =F FH + o2 GGH

ArN- 11

The signal subspace (i.e. the linear space that is spanned by
the columns of F) coincides with the space spanned by the
columns of Heff,N. By orthogonality of columns in F with
those in G, any vector in the noise subspace is orthogonal to
the columns in Heff,N, i.e.

Heff,Ngk OrN/xl (10)

for all k {,...,N -rN - 1}, which is the princi-
ple used in the channel identification procedure. Let C e
CNh X N+Nh - 1 be the Tceplitz filtering matrix constructed from
9 so that [!gk]i,j = [G]j i,k Using the definition ofHeff,N
in (9), we can rewrite (10) as

3.3. On the identifiability of the solution

To show that (12) can be used to uniquely determine the chan-
nel coefficients h (with an inherent scalar ambiguity), we
prove the following theorem. As in (9), we continue to use the
notation Heff,N to denote the N x (N + Nh- 1)r/M effec-
tive channel matrix constructed from channel taps h. Recall
that N is the length of observation window, and therefore the
number of rows in Heff,N. We use the notation Heff,N-M
to denote the (reduced) size N-M x (N-M+Nh- 1)r/M
effective channel matrix constructed from the same h but with
an observation window of length N -M.

Theorem 1. Assume that Heff,N-M having corresponding
channel taps h is full column rank. Let h' be another set
of channel taps, with corresponding effective channel matrix
H'eff,N. Then, thefollowing are equivalent:

Si. The matrix HI3ff,N is nonzero and the range ofHl3ff N
is included in the range ofHeff,N.

S2. The matrices are related via Heff,N =

where a :t 0 is a a complex scalarfactor.
cvH'eff,N,

Proof We provide a sketch, as the proof is very similar to that
in [4, Theorem 3]. That S2 s> SI is trivial. Thus, we focus
on showing SI1 S2. Following the same procedure in [4,
Theorem 3], though with block matrices in place of vectors,
it can be shown that, under S 1,

Heff,N Hef f,N (IN, A) (13)

for some matrix A C Crx r. The steps involve a block parti-
tioning of Heff,N, and then demonstration that in order for
any column of Heff,N to be in the range of H'ff N, (13)
must be satisfied.

Alas, the condition (13) is not the result we seek (i.e. S2),
and so more work is required. However, A can only assume
values such that He ff,N (INX 8 A) is a valid channel matrix
(i.e. so that the Tceplitz structure of the underlying 7-HN is
preserved). Note that for any choice of A C Crx r F,A can
be written as BF, for some B C CMxM, due to the fact that
F, is full column rank. Thus, for some B, we can write

(IN, X (gk)

or (INX Xg rH) gHKh)
OrN, x 1

OrNx 1 (11)
HIeff,N(INX 8 A) EN (INX

EN (IN.
Fx)(INx OA)
B)(INx Fx)



where the product 7H( (IN, (8) B) needs to be a Toeplitz ma-
trix in order to be a valid channel matrix. The product of a
rectangular Tceplitz matrix with a square matrix can only it-
self be Tceplitz if the square matrix is a scaled identity matrix.
Hence, B = alI, and

Heff,N= aH3eff,N

Consequently, the noise subspace G uniquely determines
the channel coefficients h.

Lemma 1. The autocovariance matrix -y, described in (14)
has rankr = M -1.

Proof First note that M-y, is an idempotent matrix since
(M'yJ)2 = M'yX, which can be shown using the fact that
S is unitary, and 1MXM =M X M. The rank of an idem-
potent matrix equals its trace [7], so

rank(y-x) rank(M-yx)

tr(IM) -tr (71/MXMS s)

3.4. Subspace-based parameter estimation scheme = M 1

When the exact autocovariance matrix is available at the re-
ceiver, an exact solution to (12) can be found. However, in
practice only sample estimates of k are available, and so the
nullity of Q in (12) may not be exactly 1. Consequently, we
can solve (12) in the least squares sense with a constraint to
avoid the trivial solution h = 0. As addressed in [4], different
constraints provide different solutions; however, we consider
only the quadratic constraint hHh = 1. Thus, we can esti-
mate h via the constrained minimization

H H
h= arg min h Q Qh

Ih I2 1

which amounts to choosing the eigenvector corresponding to
the smallest eigenvalue ofQ Q. We note that this quadratic
constraint requires calculation of an additional eigendecom-
position, so other constraints may be preferable from a com-
putational perspective [4].

3.5. Particulars for orthogonal modulation

Up to now, Section 3 has proceeded in a fair amount of gen-
erality: the blind channel identification method we have pre-
sented is suitable for any periodM cyclostationary source se-
quence with i.i.d. symbols, as long as the rank of the autoco-
variance of the source vector is not full rank (i.e. r < M).
Consequently, the scheme is suitable for use with other non-
linear modulation schemes like biorthogonal modulation and
simplex modulation, so long as the rank deficient condition is
satisfied. Here, however, we only consider use of the scheme
for the orthogonal modulation system model described in Sec-
tion 2.

We now consider the specific form of the autocovariance
matrix for a source sequence in orthogonal modulation, and
show that it satisfies the rank deficiency requirement. From
(1), we have

/IX = E[x[n]]
1

=MSlM 1
ax E[x[n]xH [n] _ pH

MIM - M2SMXMS (14)

U

Hence, the autocovariance matrix is rank deficient as re-
quired. The length condition necessary to ensure that the ef-
fective channel matrix Heff,N is tall is given by

N > (M -1)Nh. (15)

Summarizing, then, the estimation procedure is as follows:

1. Generate an estimate of the autocovariance of the re-
ceived signal, -ye C ,NXN where N satisfies (15).

2. Find the eigendecomposition of -y, and store the eigen-
vectors corresponding to the N+ Nh -1-L(N+Nh-
1)/Mj smallest eigenvalues in G.

- H -

3. Form Q Q where Q was defined in (12).

4. The channel estimate h is then the eigenvector corre-

sponding to the smallest eigenvalue ofQ Q.

Implicit in the above procedure is that the receiver has knowl-
edge of the channel length Nh, which is a standard assump-
tion of subspace-based blind channel estimators. In practice,
this will not be the case. While we assume this information is
available to the receiver, the issue of channel order estimation
has been addressed in [8], for example.

Also implicit in the above procedure is knowledge of the
rank-deficient autocovariance matrix of the source sequence
-y, (and corresponding factorization ,'jXH), which is required
for the construction of Q in step 3. While this assumption
seems very reasonable, we note that it is in contrast to [4]
where it was only necessary that -yx be full rank but other-
wise unknown.

4. SIMULATIONS

To investigate the effect of using the estimated autocovari-
ance matrix instead of the exact autocovariance matrix, we
conducted the following experiment. We chose the symbol
waveforms to be binary PPM, so that S = I2. Since PPM



signaling only has a real component, we conducted the exper-
iment using only real signals. We used a non-minimum phase
length Nh = 10 channel with impulse response

h [-0.091,0.843,-0.372,0.168,-0.091,-0.015,
-0.047, 0.305, 0.102, -0.0270]T

with AWGN such that the SNR was 10 dB. Note that this
channel has three roots very near the unit circle. The length
of the temporal window was chosen to be N = 12 which
satisfies (15). After finding the estimated channel using the
proposed blind method, we calculated the mean square error
between the exact channel impulse response and estimated
response via

MSE =(h-h (h-h) (16)

and we averaged over 500 Monte Carlo runs. We conducted
the simulation for a variety of symbol lengths, and the re-
sults are shown by the solid line in Fig. 2. We note that the
performance of the channel estimate depends heavily on the
amount ofAWGN; for example, when we increased the SNR
to 20 dB, we found that the algorithm was able to attain an
MSE less than -20 dB.
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5. CONCLUSION

We have considered blind channel estimation for orthogonal
modulation. While equalization of orthogonal modulation has
been previously studied, little attention has been paid to blind
channel estimation. We extended a classical subspace-based
blind technique [4] in a way that is suitable for use with or-
thogonal modulation. Unlike classical subspace-based blind
channel estimators, however, our scheme does not require
oversampling and/or multiple sensors. Future research could
study the robustness ofthis scheme in harsh environments, for
example in situations where the effective channel matrix is not
full rank. In addition, future work could investigate alterna-
tive blind estimation/equalization techniques for this modula-
tion, such as adaptive gradient descent-based algorithms.
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